Rigid point cloud registration based on correspondence cloud for image-to-patient registration in image-guided surgery.

Med Phys

Digital Medical Research Center of School of Basic Medical Sciences, Fudan University, Shanghai, China.

Published: July 2024

Background: Image-to-patient registration aligns preoperative images to intra-operative anatomical structures and it is a critical step in image-guided surgery (IGS). The accuracy and speed of this step significantly influence the performance of IGS systems. Rigid registration based on paired points has been widely used in IGS, but studies have shown its limitations in terms of cost, accuracy, and registration time. Therefore, rigid registration of point clouds representing the human anatomical surfaces has become an alternative way for image-to-patient registration in the IGS systems.

Purpose: We propose a novel correspondence-based rigid point cloud registration method that can achieve global registration without the need for pose initialization. The proposed method is less sensitive to outliers compared to the widely used RANSAC-based registration methods and it achieves high accuracy at a high speed, which is particularly suitable for the image-to-patient registration in IGS.

Methods: We use the rotation axis and angle to represent the rigid spatial transformation between two coordinate systems. Given a set of correspondences between two point clouds in two coordinate systems, we first construct a 3D correspondence cloud (CC) from the inlier correspondences and prove that the CC distributes on a plane, whose normal is the rotation axis between the two point clouds. Thus, the rotation axis can be estimated by fitting the CP. Then, we further show that when projecting the normals of a pair of corresponding points onto the CP, the angle between the projected normal pairs is equal to the rotation angle. Therefore, the rotation angle can be estimated from the angle histogram. Besides, this two-stage estimation also produces a high-quality correspondence subset with high inlier rate. With the estimated rotation axis, rotation angle, and the correspondence subset, the spatial transformation can be computed directly, or be estimated using RANSAC in a fast and robust way within only 100 iterations.

Results: To validate the performance of the proposed registration method, we conducted experiments on the CT-Skull dataset. We first conducted a simulation experiment by controlling the initial inlier rate of the correspondence set, and the results showed that the proposed method can effectively obtain a correspondence subset with much higher inlier rate. We then compared our method with traditional approaches such as ICP, Go-ICP, and RANSAC, as well as recently proposed methods like TEASER, SC2-PCR, and MAC. Our method outperformed all traditional methods in terms of registration accuracy and speed. While achieving a registration accuracy comparable to the recently proposed methods, our method demonstrated superior speed, being almost three times faster than TEASER.

Conclusions: Experiments on the CT-Skull dataset demonstrate that the proposed method can effectively obtain a high-quality correspondence subset with high inlier rate, and a tiny RANSAC with 100 iterations is sufficient to estimate the optimal transformation for point cloud registration. Our method achieves higher registration accuracy and faster speed than existing widely used methods, demonstrating great potential for the image-to-patient registration, where a rigid spatial transformation is needed to align preoperative images to intra-operative patient anatomy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.17243DOI Listing

Publication Analysis

Top Keywords

image-to-patient registration
20
registration
17
rotation axis
16
correspondence subset
16
inlier rate
16
point cloud
12
cloud registration
12
point clouds
12
registration method
12
proposed method
12

Similar Publications

Purpose: In mandibular reconstructive surgery with free fibula flap, 3D-printed patient-specific cutting guides are the current state of the art. Although these guides enable accurate transfer of the virtual surgical plan to the operating room, disadvantages include long waiting times until surgery and the inability to change the virtual plan intraoperatively in case of tumor growth. Alternatively, (electromagnetic) surgical navigation combined with a non-patient-specific cutting guide could be used, requiring accurate image-to-patient registration.

View Article and Find Full Text PDF

Augmented Reality in Neurosurgery.

Adv Exp Med Biol

November 2024

Department of Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands.

Augmented Reality (AR) involves superimposing digital content onto the real environment. AR has evolved into a viable tool in neurosurgery, enhancing intraoperative navigation, medical education and surgical training by integrating anatomical data with the real world. Neurosurgical AR relies on several key techniques to be successful, which includes image segmentation, model rendering, AR projection, and image-to-patient registration.

View Article and Find Full Text PDF

Rigid point cloud registration based on correspondence cloud for image-to-patient registration in image-guided surgery.

Med Phys

July 2024

Digital Medical Research Center of School of Basic Medical Sciences, Fudan University, Shanghai, China.

Background: Image-to-patient registration aligns preoperative images to intra-operative anatomical structures and it is a critical step in image-guided surgery (IGS). The accuracy and speed of this step significantly influence the performance of IGS systems. Rigid registration based on paired points has been widely used in IGS, but studies have shown its limitations in terms of cost, accuracy, and registration time.

View Article and Find Full Text PDF

Achieving and maintaining proper image registration accuracy is an open challenge of image-guided surgery. This work explores and assesses the efficacy of a registration sanity check method for augmented reality-guided navigation (AR-RSC), based on the visual inspection of virtual 3D models of landmarks. We analyze the AR-RSC sensitivity and specificity by recruiting 36 subjects to assess the registration accuracy of a set of 114 AR images generated from camera images acquired during an AR-guided orthognathic intervention.

View Article and Find Full Text PDF

Today, image-guided systems play a significant role in improving the outcome of diagnostic and therapeutic interventions. They provide crucial anatomical information during the procedure to decrease the size and the extent of the approach, to reduce intraoperative complications, and to increase accuracy, repeatability, and safety. Image-to-patient registration is the first step in image-guided procedures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!