Irreversible ultrafast events are prevalent in nature, yet their capture in real time poses significant challenges. Traditional single-shot imaging technologies, which utilize a single optical pump and single delayed electron probe, offer high spatiotemporal resolution but fail to capture the entire dynamic evolutions. Here, we introduce a novel imaging method employing a single optical pump and delayed multiple electron probes. This approach, facilitated by an innovative deflector in ultrafast electron microscopy, enables the acquisition of nine frames per exposure, paving the way for statistical and quantitative analyses. We have developed an algorithm that corrects frame-by-frame distortions, realizing a cross-correlation enhancement of ∼26%. Achieving ∼12 nm and 20 ns resolution, our method allows for the comprehensive visualization of laser-induced behaviors in Au nanoparticles, including merging, jumping, and collision processes. Our results demonstrate the capability of this multiframe imaging technique to document irreversible processes across materials science and biology with unprecedented nanometer-nanosecond precision.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c01025 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!