In the liquid phase of heterogeneous catalysis, solvent plays an important role and governs the kinetics and thermodynamics of a reaction. Although it is often difficult to quantify the role of the solvent, it becomes particularly challenging when a zeolite is used as the catalyst. This difficulty arises from the complex nature of the liquid/zeolite interface and the different solvation environments around catalytically active sites. Here, we use ab initio molecular dynamics simulations to probe the local solvation structure and dynamics of methanol and water over MWW zeolite nanosheets with varying Brønsted acidity. We find that the zeolite framework and the number and location of the acid sites in the zeolite influence the structure and dynamics of the solvent. In particular, methanol is more likely to be in the vicinity of the aluminum (Al3+) at the T4 site than at T1 due to easy accessibility. The methanol oxygen binds strongly to the Al at the T4 site, weakening the Al-O for the bridging acid site, which results in the formation of the silanol group, significantly reducing the acidity of the site. The behavior of methanol is in direct contrast to that of water, where protons can easily propagate from the zeolite to the solvent molecules regardless of the acid site location. Our work provides molecular-level insights into how solvent interacts with zeolite surfaces, leading to an improved understanding of the catalytic site in the MWW zeolite nanosheet.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0211705 | DOI Listing |
Environ Microbiome
January 2025
LMO Team, National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon, Republic of Korea.
Background: The anthosphere, also known as the floral microbiome, is a crucial component of the plant reproductive system. Therefore, understanding the anthospheric microbiome is essential to explore the diversity, interactions, and functions of wildflowers that coexist in natural habitats. We aimed to explore microbial interaction mechanisms and key drivers of microbial community structures using 144 flower samples from 12 different wild plant species inhabiting the same natural environment in South Korea.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Korea.
In the present study, we experimentally investigate the liquid flow induced in a rotating drum (cylindrical tank with a short aspect ratio) aligned horizontally, focusing on the variation in the time-averaged and fluctuating flow structures with different fill ratios. For each fill ratio, controlled by varying the water height, we measure the velocity fields at different cross-sectional planes with particle image velocimetry while varying the rotational speed of the drum. Compared to the condition of a fill ratio of 1.
View Article and Find Full Text PDFSci Rep
January 2025
School of Computer and Communication Engineering, Dalian Jiaotong University, Dalian, 116028, China.
This paper proposes the YOLOv8n_H method to address issues regarding parameter redundancy, slow inference speed, and suboptimal detection precision in contemporary helmet-wearing target recognition algorithms. The YOLOv8 C2f module is enhanced with a new SC_Bottleneck structure, incorporating the SCConv module, now termed SC_C2f, to mitigate model complexity and computational costs. Additionally, the original Detect structure is substituted with the PC-Head decoupling head, leading to a significant reduction in parameter count and an enhancement in model efficiency.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurosurgery, Kepler University Hospital and Johannes Kepler University Linz, Wagner-Jauregg Weg 15, 4020 Linz and Altenbergerstrasse 69, Linz, 4040, Austria.
Accurate rupture risk assessment is essential for optimizing treatment decisions in patients with cerebral aneurysms. While computational fluid dynamics (CFD) has provided critical insights into aneurysmal hemodynamics, most analyses focus on blood flow patterns, neglecting the biomechanical properties of the aneurysm wall. To address this limitation, we applied Fluid-Structure Interaction (FSI) analysis, an integrative approach that simulates the dynamic interplay between hemodynamics and wall mechanics, offering a more comprehensive risk assessment.
View Article and Find Full Text PDFNat Commun
January 2025
School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China.
Solar-driven, selective biomass hydrogenation is recognized as a promising route to renewable chemicals production, but remains challenging. Here, we report a TiO supported Cu single-atom catalyst with a four-coordinated Cu-O structure, which can be universally applied for solar-driven production of various renewable chemicals from lignocellulosic biomass-derived platform molecules with good yields using green methanol as a hydrogen donor, to address this challenge. It is significant that the biomass upgrading driven by natural sunlight on a gram scale demonstrates the great practical potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!