A series of tri-coordinated zinc alkyl complexes with the general molecular formula [-{NHIP(Ph)(E)N-Dipp}ZnEt] [R = Dipp (2,6-diisopropylphenyl), E = S (3a), Se (3b) and R = Bu (-butyl), E = S (4a), Se (4b)] bearing imino-phosphanamidinate chalcogenide ligands were prepared in good yields from the reaction between the protic imino-phosphanamidinate chalcogenide ligand [NHIP(Ph)(E)NH-Dipp] [R = Dipp, E = S (1a), Se (1b) and R = Bu, E = S (2a), Se (2b)] and diethylzinc at room temperature. The molecular structures of all the zinc complexes were established by single-crystal X-ray diffraction analysis. In the solid state, all complexes exhibited a distorted trigonal planar geometry around the zinc ion. Metal-chalcogenide (Zn-S/Se) interactions were observed in the coordination sphere. These zinc alkyl complexes were employed as pre-catalysts in the hydroboration reaction of nitriles and esters to obtain the corresponding ,-diborylamines and boronate esters, respectively, under ambient conditions. A wide substrate scope of nitriles and esters is presented.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4dt00840eDOI Listing

Publication Analysis

Top Keywords

zinc alkyl
12
alkyl complexes
12
imino-phosphanamidinate chalcogenide
12
nitriles esters
12
tri-coordinated zinc
8
chalcogenide ligands
8
complexes
5
complexes coordination
4
coordination imino-phosphanamidinate
4
ligands precursors
4

Similar Publications

This study aimed to investigate the properties of tin(II) oxide (SnO) as an unconventional cross-linking agent for chloroprene (CR) and styrene-butadiene (SBR) rubbers compositions. The use of tin(II) oxide results from the need to reduce the use of zinc oxide as a cross-linking agent due to environmental regulations and its toxic impact on aquatic environments. The studied elastomeric blends can be cross-linked with tin(II) oxide, and the results demonstrate the significant potential of this oxide in such applications.

View Article and Find Full Text PDF

The functionalization of pyridines at positions remote to the N-atom remains an outstanding problem in organic synthesis. The inherent challenges associated with overriding the influence of the embedded N-atom within pyridines was overcome using n-butylsodium, which provided an avenue to deprotonate and functionalize the C4-position over traditionally observed addition products that are formed with organolithium bases. In this work, we show that freshly generated 4-sodiopyrdines could undergo transition metal free alkylation reactions directly with a variety of primary alkyl halides bearing diverse functional groups.

View Article and Find Full Text PDF

Bisquinoline-based fluorescent cadmium sensors.

Dalton Trans

January 2025

Laboratory for Molecular & Functional Design, Department of Engineering, Nara Women's University, Nara 630-8506, Japan.

Rational molecular design afforded fluorescent Cd sensors based on bisquinoline derivatives. Introduction of three methoxy groups at the 5,6,7-positions of the quinoline rings of BQDMEN (,'-bis(2-quinolylmethyl)-,'-dimethylethylenediamine) resulted in the reversal of metal ion selectivity in fluorescence enhancement from zinc to cadmium. Introduction of bulky alkyl groups and an ,-bis(2-quinolylmethyl)amine structure, as well as replacement of one of the two tertiary amine binding sites with an oxygen atom and the use of a 1,2-phenylene backbone significantly improved the Cd specificity.

View Article and Find Full Text PDF

"Alkyl-Substituted Phenoxy" Spacer Strategy: Antiaggregated and Highly Soluble Zinc Phthalocyanines for Color Films.

ACS Omega

December 2024

State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China.

A series of zinc phthalocyanine derivatives (ZnPcs) were designed by introducing different volumes of steric hindrance groups (chlorine atom, n-propyloxy, isopropyloxy, n-butoxy, isobutoxy, -butoxy, 2,4-di--butylphenoxy, 2,4-di--pentylphenoxy) on the peripheral and nonperipheral positions of phthalocyanine. Density functional theory (DFT) calculations presented that the substitution of sterically hindered 2,4-di--butylphenoxy or 2,4-di--pentylphenoxy on the peripheral positions effectively reduced the aggregation of ZnPcs, improving the solubility of ZnPcs, and the simultaneous substitution on the peripheral and nonperipheral positions could achieve ZnPcs with different colors. From the calculation results, six low-aggregation ZnPcs were synthesized for the first time.

View Article and Find Full Text PDF

Novel organic additives with high dipole moments: Improving the anode interface structure to enhance the performance of zinc ion aqueous batteries.

J Colloid Interface Sci

December 2024

Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, PR China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China; Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China. Electronic address:

The reversibility and stability of aqueous zinc-ion batteries (AZIBs) are largely limited by free-water-induced side reactions (e.g., hydrogen evolution and zinc corrosion) and negative zinc dendrite growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!