Label-free liquid crystal-based optical detection of norfloxacin using an aptamer recognition probe in soil and lake water.

Analyst

Nanocarbon and Sensor Laboratory, Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Greater Noida, India.

Published: July 2024

Norfloxacin (NOX), a broad spectrum fluoroquinolone (FQ) antibiotic, is commonly detected in environmental residues, potentially contributing to biological drug resistance. In this paper, an aptamer recognition probe has been used to develop a label-free liquid crystal-based biosensor for simple and robust optical detection of NOX in aqueous solutions. Stimuli-receptive liquid crystals (LCs) have been employed to report aptamer-target binding events at the LC-aqueous interface. The homeotropic alignment of LCs at the aqueous-LC interface is due to the self-assembly of the cationic surfactant cetyltrimethylammonium bromide (CTAB). In the presence of the negatively charged NOX aptamer, the ordering changes to planar/tilted. On addition of NOX, the aptamer-NOX binding causes redistribution of CTAB at the LC-aqueous interface and the homeotropic orientation is restored. This results in a bright-to-dark optical transition under a polarized optical microscope (POM). This optical transition serves as a visual indicator to mark the presence of NOX. The devised aptasensor demonstrates high specificity with a minimum detection limit of 5 nM (1.596 ppb). Moreover, the application of the developed aptasensor for the detection of NOX in freshwater and soil samples underscores its practical utility in environmental monitoring. This proposed LC-based method offers several advantages over conventional detection techniques for a rapid, feasible and convenient way to detect norfloxacin.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4an00236aDOI Listing

Publication Analysis

Top Keywords

label-free liquid
8
liquid crystal-based
8
optical detection
8
aptamer recognition
8
recognition probe
8
detection nox
8
lc-aqueous interface
8
interface homeotropic
8
optical transition
8
nox
6

Similar Publications

Sensitive, rapid and label-free biochemical sensors are needed for many applications. In this protocol, we describe biochemical detection using FLOWER (frequency locked optical whispering evanescent resonator)-a technique that we have used to detect single protein molecules in aqueous solution as well as exosomes, ribosomes and low part-per-trillion concentrations of volatile organic compounds. Whispering gallery mode microtoroid resonators confine light for extended time periods (hundreds of nanoseconds).

View Article and Find Full Text PDF

Heterogeneities among tumor cells significantly contribute towards cancer progression and therapeutic inefficiency. Hence, understanding the nature of cancer through liquid biopsies and isolation of circulating tumor cells (CTCs) has gained considerable interest over the years. Microfluidics has emerged as one of the most popular platforms for performing liquid biopsy applications.

View Article and Find Full Text PDF

Background: High-density lipoprotein (HDL) modulates the blood-brain barrier and cerebrovascular integrity, likely influencing the risk of Alzheimer's disease (AD), neurodegeneration, and cognitive decline.

Objective: This study aims to identify HDL protein cargo associated with brain amyloid deposition and brain volume in regions vulnerable to AD pathology in older adults.

Methods: HDL was separated from the plasma of 65 non-demented participants of the Atherosclerosis Risk in Communities (ARIC) study using a fast protein liquid chromatography method.

View Article and Find Full Text PDF

Hydrogel-Gated MXene-Graphene Field-Effect Transistor for Selective Detection and Screening of SARS-CoV-2 and Bacteria.

ACS Appl Mater Interfaces

January 2025

Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States.

Field-effect transistor (FET) biosensors have significantly attracted interest across various disciplines because of their high sensitivity, time-saving, and label-free characteristics. However, it remains a grand challenge to interface the FET biosensor with complex liquid media. Unlike standard liquid electrolytes containing purified protein content, directly exposing FET biosensors to complex biological fluids introduces significant sensing noise, which is caused by the abundance of nonspecific proteins, viruses, and bacteria that adsorb to the biosensor surfaces.

View Article and Find Full Text PDF

Liquid biopsy is an efficient diagnostic/prognostic tool for tumor-derived component detection in peripheral circulation and other body fluids. The rapid assessment of liquid biopsy techniques facilitates early cancer diagnosis and prognosis. Early and precise detection of tumor biomarkers provides crucial information about the tumor that guides clinicians towards effective personalized medicine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!