The mechanics of curved, heterogeneous, surfactant-laden surfaces and interfaces are important to a variety of engineering and biological applications. To date, most models of rheologically complex interfaces have focused on homogeneous systems of planar or fixed curvature. In this study, we investigate a simple, dynamical model of a two-phase surface fluid on a curved interface: a condensed, surface-viscous domain embedded within a surface-inviscid, spherical interface of time-varying radius of curvature. Our aim is to understand how changes in surface curvature generate two-dimensional Stokes flows inside the domain, thereby resisting curvature deformation and distorting the domain shape. We model the surface stress within the domain using the classical Boussinesq-Scriven constitutive equation, simplified for a near-spherical cap undergoing a small-amplitude curvature deformation. We then analyze the frequency-dependent dynamics of the surface stress and curvature within the domain when the pressure difference across the surface is sinusoidally oscillated. We find that the curvature relaxes diffusively, and thus define a Peclet number (Pe) relating the rate of diffusion to the oscillation frequency. At small enough Pe, the surface deforms quasi-statically, whereas at high Pe, the curvature varies sharply within a thin boundary layer adjacent to the domain border. Consequently, the curvature of the domain appears discontinuous from the rest of the surface under rapid oscillation. We then examine the linear stability of the domain shape to small, non-axisymmetric perturbations when the surface is steadily compressed (i.e., the pressure difference across it is increased). While the line tension at the domain border tends to maintain circular symmetry, surface-viscous stresses generated by surface compression tend to destabilize the perimeter. A shape instability arises above a critical surface capillary number (Ca) relating surface-viscous stresses to line tension. Moreover, we show that the mechanism of instability is distinct from that of the famous Saffman-Taylor fingering instability. Various extensions of our model are discussed, including materials with finite dilatational surface viscosity, linear and nonlinear (visco)elasticity, and large-amplitude deformations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11160971 | PMC |
http://dx.doi.org/10.1103/PhysRevFluids.8.054001 | DOI Listing |
Chempluschem
January 2025
Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India.
The agricultural sector of any country plays a pivotal role in its economy. Irrigation and the provision of appropriate nutrient levels in soil are essential for optimizing plant growth and enhancing crop productivity. To support the increasing need for food due to the growing population worldwide, synthetic fertilizers have been widely used in the agricultural sector.
View Article and Find Full Text PDFChemistry
January 2025
University of Hyderabad School of Chemistry, School of Chemistry, School of Chemistry, University of Hyderabad, 500046, Hyderabad, INDIA.
The amorphous/crystalline (A/C) assembly in molecular solids has a direct bearing on their attributes and applications, including mechanical, pharmaceutical, electronic and photophysical. A systematic analysis of the molecular features and interactions that determine the predilection towards the A, C or bi-stable A-C states is critical. This fundamental problem is addressed through an exhaustive investigation of a large family of alkoxyalkyl diaminodicyanoquinodimethanes (ROR'-DADQs); enhancement of their fluorescence from the solution, to the A, to the C state serves as an excellent signature of the phase preference and temporal stability.
View Article and Find Full Text PDFImpact of climate change that stems from gaseous emissions require sustainable materials to eliminate sulfur. This study involves the modification of humic acid with magnetite nanoparticles (Fe₃O₄ NPs) by a microwave-assisted synthesis of an absorbent with reasonable pore volume and diameter for elimination of thiophenic compounds from fuel. The magnetic nano adsorbent designated Fe3O4@HA was characterized using advanced spectroscopic techniques, while their structure and morphology were analyzed through DLS, XPS, XRD, FT-IR, TGA, FESEM-EDX, VSM, and BET-N2 techniques.
View Article and Find Full Text PDFLangmuir
January 2025
School of Physics, East China University of Science and Technology, Shanghai 200237, China.
Black phosphorus (BP), a promising two-dimensional material, faces significant challenges for its applications due to its instability in air and water. Herein, molecular dynamics simulations reveal that a self-assembled ferrocene (FeCp) molecular layer can form on BP surfaces and remain stable in aqueous environments, predicting its effectiveness for passivation. This theoretical finding is corroborated by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, and optical microscopy observations.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Rare Earths, University of Science and Technology of China, Hefei 230026, China.
Achieving ultrahigh permeance and superoleophobicity is crucial for membrane application. Here, we demonstrated that a poly(ionic liquid)/PES hydrogel membrane can achieve dual goals. The high polarity of the ionic liquids induces the water molecules on the membrane surface to be arranged more ordered, as verified by molecular dynamics (MD) simulation and advanced femtosecond sum frequency generation (SFG) vibrational spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!