We consider genealogies arising from a Markov population process in which individuals are categorized into a discrete collection of compartments, with the requirement that individuals within the same compartment are statistically exchangeable. When equipped with a sampling process, each such population process induces a time-evolving tree-valued process defined as the genealogy of all sampled individuals. We provide a construction of this genealogy process and derive exact expressions for the likelihood of an observed genealogy in terms of filter equations. These filter equations can be numerically solved using standard Monte Carlo integration methods. Thus, we obtain statistically efficient likelihood-based inference for essentially arbitrary compartment models based on an observed genealogy of individuals sampled from the population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11160859 | PMC |
Language is a sophisticated cognitive skill that relies on the coordinated activity of cerebral cortex. Acquiring a second language creates intricate modifications in brain connectivity. Although considerable studies have evaluated the impact of second language acquisition on brain networks in adulthood, the results regarding the ultimate form of adaptive plasticity remain inconsistent within the adult population.
View Article and Find Full Text PDFOecologia
January 2025
Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, 80523, USA.
Immigration and emigration are key demographic processes of animal population dynamics. However, we have limited knowledge on how fine-scale movement varies over space and time. We developed a Bayesian integrated population model using individual mark-recapture and count data to characterize fine-scale movement of stream fish at 20-m resolution in a 740-m study area every two months for 28 months.
View Article and Find Full Text PDFEcology
January 2025
Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, USA.
Understanding how foundation species recover from disturbances is key for predicting the future of ecosystems in the Anthropocene. Coral reefs are dynamic ecosystems that can undergo rapid declines in coral abundance following disturbances. Understanding why some reefs recover quickly from these disturbances whereas others recover slowly (or not at all) gives insight into the drivers of community resilience.
View Article and Find Full Text PDFCurr Protoc
January 2025
Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
Competitive fitness is a fundamental concept in evolutionary biology that captures the ability of organisms to survive, reproduce, and compete for resources in their environment. Competitive fitness is typically assessed in the lab by growing two or more competitors together and measuring the frequency of each at multiple time points. Traditional microbial competitive fitness assays are labor intensive and involve plating on solid medium and counting colonies.
View Article and Find Full Text PDFTransl Behav Med
January 2025
Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Background: Stigma is a pervasive and distressing problem experienced frequently by lung cancer patients, and there is a lack of psychosocial interventions that target the reduction of lung cancer stigma. Mindful self-compassion (MSC) is an empirically supported intervention demonstrated to increase self-compassion and reduce feelings of shame and distress in non-cancer populations. However, there are several anticipated challenges for delivering MSC to lung cancer patients, and modifications may be needed to improve acceptability, appropriateness, and feasibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!