Crossbridge binding, state transitions, and force in active muscle is dependent on the radial spacing between the myosin-containing thick filament and the actin-containing thin filament in the filament lattice. This radial lattice spacing has been previously shown through spatially explicit modeling and experimental efforts to greatly affect quasi-static, isometric, force production in muscle. It has recently been suggested that this radial spacing might also be able to drive differences in mechanical function, or net work, under dynamic oscillations like those which occur in muscles . However, previous spatially explicit models either had no radial spacing dependence, meaning the lattice spacing could not be investigated, or did include radial spacing dependence but could not reproduce net work during dynamic oscillations and only investigated isometric contractions. Here we show the first spatially explicit model to include radial crossbridge dependence which can produce mechanical function similar to real muscle. Using this spatially explicit model of a half sarcomere, we show that when oscillated at strain amplitudes and frequencies like those in the hawk moth , mechanical function (net work) does depend on the lattice spacing. In addition, since the trajectory of lattice spacing changes during dynamic oscillation can vary from organism to organism, we can prescribe a trajectory of lattice spacing changes in the spatially explicit half sarcomere model and investigate the extent to which the time course of lattice spacing changes can affect mechanical function. We simulated a half sarcomere undergoing dynamic oscillations and prescribed the Poisson's ratio of the lattice to be either 0 (constant lattice spacing) or 0.5 (isovolumetric lattice spacing changes). We also simulated net work using lattice spacing data taken from which has a variable Poisson's ratio. Our simulation results indicate that the lattice spacing can change the mechanical function of muscle, and that in some cases a 1 nm difference can switch the net work of the half sarcomere model from positive (motor-like) to negative (brake-like).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11160890 | PMC |
J Chem Inf Model
December 2024
Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States.
Drug efficacy often correlates better with dissociation kinetics than binding affinity alone. To study binding kinetics computationally, it is necessary to identify all of the possible ligand dissociation pathways. The site identification by ligand competitive saturation (SILCS) method involves the precomputation of a set of maps (FragMaps), which describe the free energy landscapes of typical chemical functionalities in and around a target protein or RNA.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA. Electronic address:
Microtubule (MT) function plasticity originates from its composition of α- and β-tubulin isotypes and the post-translational modifications of both subunits. Aspects such as MT assembly dynamics, structure, and anticancer drug binding can be modulated by αβ-tubulin heterogeneity. However, the exact molecular mechanism regulating these aspects is only partially understood.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Materials Science & Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
Tantalum disulfide (1T-TaS), being a Mott insulator with strong electron correlation, is highlighted for diverse collective quantum states in the 2D lattice, including charge density wave (CDW), spin liquid, and unconventional superconductivity. The Mott physics embedded in the 2D triangular CDW lattice has raised debates on stacking-dependent properties because interlayer interactions are sensitive to van der Waals (vdW) spacing. However, control of interlayer distance remains a challenge.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Department of Chemistry, Lomonosov Moscow State University (MSU), GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia.
Brush-like graft copolymers (A-g-B), in which linear A-blocks are randomly grafted onto the backbone of a brush-like B-block, exhibit intense strain-stiffening and high mechanical strength on par with load-bearing biological tissues such as skin and blood vessels. To elucidate molecular mechanisms underlying this tissue-mimetic behavior, in situ synchrotron X-ray scattering was measured during uniaxial stretching of bottlebrush- and comb-like graft copolymers with varying densities of poly(dimethyl siloxane) and poly(isobutylene) side chains. In an undeformed state, these copolymers revealed a single interference peak corresponding to the average spacing between the domains of linear A-blocks arranged in a disordered, liquid-like configuration.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Institute of Physiology II, University Hospital Muenster, University of Muenster, Muenster 48149, Germany.
In muscle, titin proteins connect myofilaments together and are thought to be critical for contraction, especially during residual force enhancement (RFE) when steady-state force is elevated after an active stretch. We investigated titin's function during contraction using small-angle X-ray diffraction to track structural changes before and after 50% titin cleavage and in the RFE-deficient, titin mutant. We report that the RFE state is structurally distinct from pure isometric contractions, with increased thick filament strain and decreased lattice spacing, most likely caused by elevated titin-based forces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!