A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Recurrent attention U-Net for segmentation and quantification of breast arterial calcifications on synthesized 2D mammograms. | LitMetric

Breast arterial calcifications (BAC) are a type of calcification commonly observed on mammograms and are generally considered benign and not associated with breast cancer. However, there is accumulating observational evidence of an association between BAC and cardiovascular disease, the leading cause of death in women. We present a deep learning method that could assist radiologists in detecting and quantifying BAC in synthesized 2D mammograms. We present a recurrent attention U-Net model consisting of encoder and decoder modules that include multiple blocks that each use a recurrent mechanism, a recurrent mechanism, and an attention module between them. The model also includes a skip connection between the encoder and the decoder, similar to a U-shaped network. The attention module was used to enhance the capture of long-range dependencies and enable the network to effectively classify BAC from the background, whereas the recurrent blocks ensured better feature representation. The model was evaluated using a dataset containing 2,000 synthesized 2D mammogram images. We obtained 99.8861% overall accuracy, 69.6107% sensitivity, 66.5758% F-1 score, and 59.5498% Jaccard coefficient, respectively. The presented model achieved promising performance compared with related models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11157579PMC
http://dx.doi.org/10.7717/peerj-cs.2076DOI Listing

Publication Analysis

Top Keywords

recurrent attention
8
attention u-net
8
breast arterial
8
arterial calcifications
8
synthesized mammograms
8
encoder decoder
8
recurrent mechanism
8
attention module
8
recurrent
5
u-net segmentation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!