Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An unprecedented and efficient three-component 1,3-dipolar cycloaddition reaction using (2-(benzo[d]thiazol-2-yl)-3-(aryl)acrylonitriles - and an in situ generated azomethine ylide from isatin and -methylglycine is described. The reaction exhibits exclusive regioselectivity, resulting in the formation of 3'-(benzo[]thiazol-2-yl)-1'-methyl-2-oxo-4'-(aryl)spiro[indoline-3,2'-pyrrolidine]-3'-carbonitriles regioisomers through / approaches. The diastereoselectivity of the reaction is highly dependent on the substitution pattern of the phenyl ring in dipolarophiles -, leading to the formation of /-cycloadducts in varying ratios. To understand the stereoselectivity, the transition state structures were optimized using the TS guess geometry with the QST3-based method. The reaction mechanism and regioselectivity were elucidated by evaluating global and local electrophilicity and nucleophilicity descriptors at the B3LYP/cc-pVTZ level of theory, along with considerations based on the HSAB principle. The analysis of global electron density transfer (GEDT) showed that the reactions are polar and electron density fluxes from azomethine ylide toward dipolarophile -. It was found from the molecular electrostatic potential map (MESP) that at the more favorable transition state, approach of reactants locates the oppositely charged regions over each other resulting in attractive forces between the two fragments. The computational results are consistent with the experimental observations, confirming that the reactions proceed through an asynchronous one-step mechanism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11154954 | PMC |
http://dx.doi.org/10.1021/acsomega.4c01552 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!