Background/objectives: Kaempferol (Ka) is one of the most widely occurring flavonoids found in large amounts in various plants. Ka has anti-obesity, antioxidant, and anti-inflammatory effects. Despite the numerous papers documenting the efficacy of Ka, some controversy remains. Therefore, this study examined the impact of Ka using 3T3-L1 and high-fat diet-induced obese mice.

Materials/methods: 3T3-L1 cells were treated with 50 μM Ka from the initiation of 3T3-L1 differentiation at D0 until the completion of differentiation on D8. Thirty male mice (C57BL/6J, 4 weeks old) were divided into 3 groups: normal diet (ND), high-fat diet (HFD), and HFD + 0.02% (w/w) Ka (Ka) group. All mice were fed their respective diets for 16 weeks. The mice were sacriced, and the plasma and hepatic lipid levels, white adipose tissue weight, hepatic glucose level, lipid level, and antioxidant enzyme activities were analyzed, and immunohistochemistry staining was performed.

Results: Ka suppressed the hypertrophy of 3T3-L1 cells, and the Ka-supplemented mice showed a significant decrease in perirenal, retroperitoneal, mesenteric, and subcutaneous fat compared to the HFD group. Ka supplementation in high-fat diet-induced obese mice also improved the overall blood lipid concentration (total cholesterol, non-high-density lipoprotein-cholesterol, phospholipids, and apolipoprotein B). Ka supplementation in high-fat-induced obesity mice reduced hepatic steatosis and insulin resistance by modulating the hepatic lipid (glucose-6-phosphate dehydrogenase, fatty acid synthase, malic enzyme, phosphatidate phosphohydrolase, and β-oxidation) activities and glucose (glucokinase, phosphoenolpyruvate carboxykinase, and G6pase)-regulating enzymes. Ka supplementation ameliorated the erythrocyte and hepatic mitochondrial HO and inflammation levels (plasma tumor necrosis factor-alpha, monocyte chemoattractant protein-1, interleukin-6, and interferon-gamma and fibrosis of liver and epididymal fat).

Conclusion: Ka may be beneficial for preventing diet-induced obesity, inflammation, oxidative stress, and diabetes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11156765PMC
http://dx.doi.org/10.4162/nrp.2024.18.3.325DOI Listing

Publication Analysis

Top Keywords

high-fat diet-induced
12
diet-induced obese
12
inflammation oxidative
8
oxidative stress
8
obese mice
8
3t3-l1 cells
8
hepatic lipid
8
mice
7
hepatic
5
kaempferol ameliorates
4

Similar Publications

Dietary caloric input and tumor growth accelerate senescence and modulate liver and adipose tissue crosstalk.

Commun Biol

January 2025

The MetaboliZSm GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

Metabolic alterations are related to tumorigenesis and other age-related diseases that are accelerated by "Westernized" diets. In fact, hypercaloric nutrition is associated with an increased incidence of cancers and faster aging. Conversely, lifespan-extending strategies, such as caloric restriction, impose beneficial effects on both processes.

View Article and Find Full Text PDF

The Effects of Novel Co-Amorphous Naringenin and Fisetin Compounds on a Diet-Induced Obesity Murine Model.

Nutrients

December 2024

Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México 14080, Mexico.

Background/objective: In recent studies, it has been shown that dietary bioactive compounds can produce health benefits; however, it is not known whether an improvement in solubility can enhance their biological effects. Thus, the aim of this work was to study whether co-amorphous (CoA) naringenin or fisetin with enhanced solubility modify glucose and lipid metabolism, thermogenic capacity and gut microbiota in mice fed a high-fat, high-sucrose (HFSD) diet.

Methods: Mice were fed with an HFSD with or without CoA-naringenin or CoA-fisetin for 3 months.

View Article and Find Full Text PDF

Background: Proactively preventing postpartum weight retention (PPWR) is one of the effective intervention strategies to reduce the occurrence of obesity in women. Population studies have shown that serum folate levels are closely related to body weight. The regulation of folic acid on lipid metabolism has been fully confirmed in both in vivo and in vitro studies.

View Article and Find Full Text PDF

Dietary sulfur amino acid restriction (SAAR) elicits various health benefits, some mediated by fibroblast growth factor 21 (FGF21). However, research on SAAR's effects on the heart is limited and presents mixed findings. This study aimed to evaluate SAAR-induced molecular alterations associated with cardiac remodeling and their dependence on FGF21.

View Article and Find Full Text PDF

Background/objectives: Functional probiotics, particularly subsp. CKDB001, have shown potential as a therapeutic option for metabolic dysfunction-associated steatotic liver disease (MASLD). However, their effects have not been confirmed in in vivo systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!