Introduction: Electrophysiology and plasma biomarkers are early and non-invasive candidates for Alzheimer's disease detection. The purpose of this paper is to evaluate changes in dynamic functional connectivity measured with magnetoencephalography, associated with the plasma pathology marker p-tau231 in unimpaired adults.
Methods: 73 individuals were included. Static and dynamic functional connectivity were calculated using leakage corrected amplitude envelope correlation. Each source's strength entropy across trials was calculated. A data-driven statistical analysis was performed to find the association between functional connectivity and plasma p-tau231 levels. Regression models were used to assess the influence of other variables over the clusters' connectivity.
Results: Frontotemporal dynamic connectivity positively associated with p-tau231 levels. Linear regression models identified pathological, functional and structural factors that influence dynamic functional connectivity.
Discussion: These results expand previous literature on dynamic functional connectivity in healthy individuals at risk of AD, highlighting its usefulness as an early, non-invasive and more sensitive biomarker.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11160744 | PMC |
http://dx.doi.org/10.1101/2024.05.29.596323 | DOI Listing |
BMC Cancer
January 2025
Division de la Recherche Clinique, Centre Jean PERRIN, 58 rue Montalembert, Clermont-Ferrand, 63011, France.
Background: Over the past twenty years, the post-cancer rehabilitation has been developed, usually in a hospital setting. Although this allows better care organization and improved security, it is perceived as stressful and restrictive by the "cancer survivor". Therefore, the transfer of benefits to everyday life is more difficult, or even uncertain.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
Carcinoembryonic antigen (CEA) and C-reactive protein (CRP) are biomacromolecules known as cancer and inflammatory markers. Thus, they play a crucial role in early cancer diagnosis, post-treatment recurrence detection, and tumor risk assessment. This paper describes the development of an ultrasensitive and selective imprinted paper-based analytical device (PAD) as impedance sensor for determination of CEA and CRP in serum samples for point-of-care testing (POCT).
View Article and Find Full Text PDFBiomol NMR Assign
January 2025
CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India.
In Arabidopsis thaliana, micro-RNA regulation is primarily controlled by DCL1, an RNase III enzyme, and its associated proteins. DCL1, together with DRB2, governs a specific group of miRNAs that induce the inhibition of target mRNA translation. DRB2 is a multi-domain protein containing two N-terminal dsRNA binding domains (dsRBD) separated by a linker, followed by an unstructured C-terminal tail.
View Article and Find Full Text PDFNat Immunol
January 2025
Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China.
A comprehensive understanding of the evolution of the immune landscape in humans across the entire lifespan at single-cell transcriptional and protein levels, during development, maturation and senescence is currently lacking. We recruited a total of 220 healthy volunteers from the Shanghai Pudong Cohort (NCT05206643), spanning 13 age groups from 0 to over 90 years, and profiled their peripheral immune cells through single-cell RNA-sequencing coupled with single T cell and B cell receptor sequencing, high-throughput mass cytometry, bulk RNA-sequencing and flow cytometry validation experiments. We revealed that T cells were the most strongly affected by age and experienced the most intensive rewiring in cell-cell interactions during specific age.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Psychology, Faculty of Psychology and Sport Science, Justus Liebig University, Otto-Behaghel-Str. 10F, 35394, Gießen, Germany.
Adapting movements to rapidly changing conditions is fundamental for interacting with our dynamic environment. This adaptability relies on internal models that predict and evaluate sensory outcomes to adjust motor commands. Even infants anticipate object properties for efficient grasping, suggesting the use of internal models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!