A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Patient-Specific Morphoelastic Growth Model of Aortic Dissection Evolution. | LitMetric

The human aorta undergoes complex morphologic changes that indicate the evolution of disease. Finite element analysis enables the prediction of aortic pathologic states, but the absence of a biomechanical understanding hinders the applicability of this computational tool. We incorporate geometric information from computed tomography angiography (CTA) imaging scans into finite element analysis (FEA) to predict a trajectory of future geometries for four aortic disease patients. Through defining a geometric correspondence between two patient scans separated in time, a patient-specific FEA model can recreate the deformation of the aorta between the two time points, showing pathologic growth drives morphologic heterogeneity. A shape-size geometric feature space plotting the variance of the shape index versus the inverse square root of aortic surface area (δ𝒮 vs. ) quantitatively demonstrates the simulated breakdown in aortic shape. An increase in δ𝒮 closely parallels the true geometric progression of aortic disease patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11160663PMC
http://dx.doi.org/10.1101/2024.05.28.596335DOI Listing

Publication Analysis

Top Keywords

finite element
8
element analysis
8
aortic disease
8
disease patients
8
aortic
6
patient-specific morphoelastic
4
morphoelastic growth
4
growth model
4
model aortic
4
aortic dissection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!