FOXP3+ regulatory T (Treg) cells are necessary to coordinate resolution of lung inflammation and a return to homeostasis after respiratory viral infections, but the specific molecular requirements for these functions and the cell types governed by Treg cells remain unclear. This question holds significance as clinical trials of Treg cell transfer therapy for respiratory viral infection are being planned and executed. Here, we report causal experiments in mice determining that Treg cells are necessary to control the numbers of activated CD8+ T cells during recovery from influenza infection. Using a genetic strategy paired with adoptive transfer techniques, we determined that Treg cells require the transcription factor TBET to regulate these potentially pro-inflammatory CD8+ T cells. Surprisingly, we found that Treg cells are dispensable for the generation of CD8+ lung tissue resident-memory T (Trm) cells yet similarly influence the transcriptional programming of CD8+ Trm and activated T cells. Our study highlights the role of Treg cells in regulating the CD8+ T cell response during recovery from influenza infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11160713PMC
http://dx.doi.org/10.1101/2024.05.30.596295DOI Listing

Publication Analysis

Top Keywords

treg cells
24
cells
12
cd8+ cells
12
recovery influenza
12
influenza infection
12
foxp3+ regulatory
8
cells require
8
tbet regulate
8
activated cd8+
8
cells recovery
8

Similar Publications

Allogeneic hematopoietic cell transplantation (HCT) is a curative therapy limited by graft-versus-host disease (GVHD). In preclinical studies and early-phase clinical studies enrichment of donor regulatory T cells (Tregs) appears to prevent GVHD and promote healthy immunity.We enrolled 44 patients on an open-label, single-center, phase 2 efficacy study investigating if a precision selected and highly purified Treg cell therapy manufactured from donor mobilized peripheral blood improves one-year GVHD-free relapse free survival (GRFS) after myeloablative conditioning (trial NCT01660607).

View Article and Find Full Text PDF

TSLP acts on regulatory T cells to maintain their identity and limit allergic inflammation.

Sci Immunol

January 2025

Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA.

Thymic stromal lymphopoietin (TSLP) is a type I cytokine that promotes allergic responses and mediates type 2 immunity. A balance between effector T cells (T), which drive the immune response, and regulatory T cells (T), which suppress the response, is required for proper immune homeostasis. Here, we report that TSLP differentially acts on T versus T to balance type 2 immunity.

View Article and Find Full Text PDF

Regulatory T cells (T) accumulate in the visceral adipose tissue (VAT) to maintain systemic metabolic homeostasis but decline during obesity. Here, we explored the metabolic pathways controlling the homeostasis, composition, and function of VAT T under normal and high-fat diet feeding conditions. We found that cholesterol metabolism was specifically up-regulated in ST2 VAT T subsets.

View Article and Find Full Text PDF

Immune Cells and Intracerebral Hemorrhage: A Causal Investigation Through Mendelian Randomization.

Brain Behav

January 2025

Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China.

Background: The involvement of immune cells in the pathophysiology of intracerebral hemorrhage (ICH) is becoming increasingly recognized, yet their specific causal contributions remain uncertain. The objective of this research is to uncover the potential causal interactions between diverse immune cells and ICH using Mendelian randomization (MR) analysis.

Methods: Genetic variants associated with 731 immune cell traits were sourced from a comprehensive genome-wide association study (GWAS) involving 3757 participants.

View Article and Find Full Text PDF

Background: Pancreatic cancer is characterized by a complex tumor microenvironment that hinders effective immunotherapy. Identifying key factors that regulate the immunosuppressive landscape is crucial for improving treatment strategies.

Methods: We constructed a prognostic and risk assessment model for pancreatic cancer using 101 machine learning algorithms, identifying OSBPL3 as a key gene associated with disease progression and prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!