A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

2'-Fucosyllactose Inhibits Human Norovirus Replication in Human Intestinal Enteroids. | LitMetric

Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis worldwide. Currently, there are no targeted antivirals for the treatment of HuNoV infection. Histo-blood group antigens (HBGAs) on the intestinal epithelium are cellular attachment factors for HuNoVs; molecules that block the binding of HuNoVs to HBGAs thus have the potential to be developed as antivirals. Human milk oligosaccharides (HMOs) are glycans in human milk with structures analogous to HBGAs. HMOs have been shown to act as decoy receptors to prevent the attachment of multiple enteric pathogens to host cells. Previous X-ray crystallography studies have demonstrated the binding of HMO 2'-fucosyllactose (2'FL) in the same pocket as HBGAs for some HuNoV strains. We evaluated the effect of 2'FL on the replication of a globally dominant GII.4 Sydney [P16] HuNoV strain using human intestinal enteroids (HIEs) from adults and children. A significant reduction in GII.4 Sydney [P16] replication was seen in duodenal and jejunal HIEs from multiple adult donors, all segments of the small intestine from an adult organ donor and in two pediatric duodenal HIEs. However, 2'FL did not inhibit HuNoV replication in two infant jejunal HIEs that had significantly lower expression of α1-2-fucosylated glycans. 2'FL can be synthesized in large scale, and safety and tolerance have been assessed previously. Our data suggest that 2'FL has the potential to be developed as a therapeutic for HuNoV gastroenteritis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11160698PMC
http://dx.doi.org/10.1101/2024.05.30.596597DOI Listing

Publication Analysis

Top Keywords

human intestinal
8
intestinal enteroids
8
potential developed
8
human milk
8
gii4 sydney
8
sydney [p16]
8
jejunal hies
8
human
6
hunov
5
2'fl
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!