In nature, organisms experience combinations of stressors. However, laboratory studies typically simplify reality and focus on the effects of an individual stressor. Here, we use a microfluidic approach to simultaneously provide a physical stressor (shear flow) and a chemical stressor (H O ) to the human pathogen . By treating cells with levels of flow and H O that commonly co-occur in nature, we discover that previous reports significantly overestimate the H O levels required to block bacterial growth. Specifically, we establish that flow increases H O effectiveness 50-fold, explaining why previous studies lacking flow required much higher concentrations. Using natural H O levels, we identify the core H O regulon, characterize OxyR-mediated dynamic regulation, and dissect the redundant roles of multiple H O scavenging systems. By examining single-cell behavior, we serendipitously discover that the combined effects of H O and flow block pilus-driven surface migration. Thus, our results counter previous studies and reveal that natural levels of H O and flow synergize to restrict bacterial colonization and survival. By studying two stressors at once, our research highlights the limitations of oversimplifying nature and demonstrates that physical and chemical stress can combine to yield unpredictable effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11160647 | PMC |
http://dx.doi.org/10.1101/2024.05.27.595753 | DOI Listing |
Arch Dermatol Res
January 2025
Department of Dermatology, Zhejiang Provincial Hospital of Dermatology, Huzhou, 313200, China.
Psoriasis is a long-lasting inflammatory skin condition characterized by excessive keratinocyte growth. Recent studies have confirmed abnormal regulation of microRNAs (miRNAs/miRs) in individuals with psoriasis. This study aimed to investigate the function and specific mechanism of action of miR-128a-3p in interleukin-22 (IL-22)-stimulated HaCaT cells.
View Article and Find Full Text PDFSci Rep
January 2025
The Queen's Medical Center, 1301 Punchbowl Street, QET 4M, Honolulu, Hawai'i, 96813, USA.
High flow nasal cannula (HFNC) can reduce the need for intubation in patients with coronavirus disease-19 (COVID-19) pneumonia induced acute hypoxemic respiratory failure (AHRF), but predictors of HFNC success could be characterized better. C-reactive protein (CRP) and D-dimer are associated with COVID-19 severity and progression. However, no one has evaluated the use of serial CRP and D-dimer ratios to predict HFNC success.
View Article and Find Full Text PDFJ Mol Med (Berl)
January 2025
Cardiovascular Surgery Department of The First Affiliated Hospital of Harbin Medical University, and Pharmacology Department of Pharmacy College of Harbin Medical University, Harbin, 150081, China.
Myocardial ischemia/reperfusion (IR) injury is a common adverse event in the clinical treatment of myocardial ischemic disease. Autosis is a form of cell death that occurs when autophagy is excessive in cells, and it has been associated with cardiac IR damage. This study aimed to investigate the regulatory mechanism of circRNA CDR1AS on autosis in cardiomyocytes under IR.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Respiratory and Critical Care Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, No. 111, Dade Road, Guangzhou, 510120, China.
Berberine (BBR) has been proved to inhibit the malignant progression of non-small cell lung cancer (NSCLC), but the underlying molecular mechanism still needs to be further revealed. NSCLC cells (A549 and H1299) were treated with BBR. CCK8 assay, colony formation assay, flow cytometry, TUNEL staining and transwell assay were used to examine cell proliferation, apoptosis and invasion.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Center for Translational Research in Hematologic Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA
Background: Cancer immunotherapy using immune checkpoint blockade (ICB) has revolutionized cancer treatment. However, patients with multiple myeloma (MM) rarely respond to ICB. Accumulating evidence indicates that the complicated tumor microenvironment (TME) significantly impacts the efficacy of ICB therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!