Hypoxia-inducible factor 1α (HIF1α) is a master regulator of numerous biological processes under low oxygen tensions. Yet, the mechanisms and biological consequences of aerobic HIF1α activation by intrinsic factors, particularly in primary cells remain elusive. Here, we show that HIF1α signaling is activated in several human primary vascular cells under ambient oxygen tensions, and in vascular smooth muscle cells (VSMCs) of normal human lung tissue, which contributed to a relative resistance to further enhancement of glycolytic activity in hypoxia. Mechanistically, aerobic HIFα activation is mediated by paracrine secretion of three branched chain α-ketoacids (BCKAs), which suppress prolyl hydroxylase domain-containing protein 2 (PHD2) activity direct inhibition and lactate dehydrogenase A (LDHA)-mediated generation of L-2-hydroxyglutarate (L2HG). Metabolic dysfunction induced by BCKAs was observed in the lungs of rats with pulmonary arterial hypertension (PAH) and in pulmonary artery smooth muscle cells (PASMCs) from idiopathic PAH patients. BCKA supplementation stimulated glycolytic activity and promoted a phenotypic switch to the synthetic phenotype in PASMCs of normal and PAH subjects. In summary, we identify BCKAs as novel signaling metabolites that activate HIF1α signaling in normoxia and that the BCKA-HIF1α pathway modulates VSMC function and may be relevant to pulmonary vascular pathobiology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11160772 | PMC |
http://dx.doi.org/10.1101/2024.05.29.595538 | DOI Listing |
Curr Neurovasc Res
July 2021
Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China.
Background: Curcumin has anti-inflammatory, antioxidant and anticancer properties. Despite the considerable evidence showing that curcumin is an efficacious and safe compound for multiple medicinal benefits, there are some demerits with respect to the therapeutic effectiveness of curcumin, namely, poor stability and solubility, and its role in angiogenesis in vivo is still not yet clear. More recently, the biodegradable polymer nanoparticles have been developed.
View Article and Find Full Text PDFJ Immunol
January 2019
The Bateson Centre, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
Drug-resistant mycobacteria are a rising problem worldwide. There is an urgent need to understand the immune response to tuberculosis to identify host targets that, if targeted therapeutically, could be used to tackle these currently untreatable infections. In this study we use an Il-1β fluorescent transgenic line to show that there is an early innate immune proinflammatory response to well-established zebrafish models of inflammation and infection.
View Article and Find Full Text PDFJ Biol Chem
October 2018
From the State Key Laboratory of Freshwater Ecology and Biotechnology and
Many aerobic organisms have developed molecular mechanism to tolerate hypoxia, but the specifics of these mechanisms remain poorly understood. It is important to develop genetic methods that confer increased hypoxia tolerance to intensively farmed aquatic species, as these are maintained in environments with limited available oxygen. As an asparaginyl hydroxylase of hypoxia-inducible factors (HIFs), factor inhibiting HIF (FIH) inhibits transcriptional activation of hypoxia-inducible genes by blocking the association of HIFs with the transcriptional coactivators CREB-binding protein (CBP) and p300.
View Article and Find Full Text PDFBlood
March 2018
Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
During development, hematopoietic stem cells (HSCs) derive from specialized endothelial cells (ECs) called hemogenic endothelium (HE) via a process called endothelial-to-hematopoietic transition (EHT). Hypoxia-inducible factor-1α (HIF-1α) has been reported to positively modulate EHT in vivo, but current data indicate the existence of other regulators of this process. Here we show that in zebrafish, Hif-2α also positively modulates HSC formation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2017
Bateson Centre, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom;
Glucocorticoid (GC) and hypoxic transcriptional responses play a central role in tissue homeostasis and regulate the cellular response to stress and inflammation, highlighting the potential for cross-talk between these two signaling pathways. We present results from an unbiased in vivo chemical screen in zebrafish that identifies GCs as activators of hypoxia-inducible factors (HIFs) in the liver. GCs activated consensus hypoxia response element (HRE) reporters in a glucocorticoid receptor (GR)-dependent manner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!