The auditory brainstem response (ABR) is an acoustically evoked EEG potential that is an important diagnostic tool for hearing loss, especially in newborns. The ABR originates from the response sequence of auditory brainstem nuclei, and a click-evoked ABR typically shows three positive peaks ('waves') within the first six milliseconds. However, an assignment of the waves of the ABR to specific sources is difficult, and a quantification of contributions to the ABR waves is not available. Here, we exploit the large size and physical separation of the barn owl first-order cochlear nucleus magnocellularis (NM) to estimate single-cell contributions to the ABR. We simultaneously recorded NM neurons' spikes and the EEG, and found that ≳ 5, 000 spontaneous single-cell spikes are necessary to isolate a significant spike-triggered average response at the EEG electrode. An average single-neuron contribution to the ABR was predicted by convolving the spike-triggered average with the cell's peri-stimulus time histogram. Amplitudes of predicted contributions of single NM cells typically reached 32.9 ± 1.1 nV (mean ± SE, range: 2.5 - 162.7 nV), or 0.07 ± 0.02% (median ± SE range: 0.01 - 4.0%) of the ABR amplitude. The time of the predicted peak coincided best with the peak of the ABR wave II, and this coincidence was independent of the click sound level. Our results suggest that wave II of the ABR is shaped by a small fraction of NM units.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11160769PMC
http://dx.doi.org/10.1101/2024.05.29.596509DOI Listing

Publication Analysis

Top Keywords

auditory brainstem
12
abr
10
contributions abr
8
spike-triggered average
8
single neuron
4
contributions
4
neuron contributions
4
contributions auditory
4
eeg
4
brainstem eeg
4

Similar Publications

Objectives: This study examined the relationships between electrophysiological measures of the electrically evoked auditory brainstem response (EABR) with speech perception measured in quiet after cochlear implantation (CI) to identify the ability of EABR to predict postoperative CI outcomes.

Methods: Thirty-four patients with congenital prelingual hearing loss, implanted with the same manufacturer's CI, were recruited. In each participant, the EABR was evoked at apical, middle, and basal electrode locations.

View Article and Find Full Text PDF

Background: Exposures to hazardous noise causes irreversible injury to the structures of the inner ear, leading to changes in hearing and balance function with strong links to age-related cognitive impairment. While the role of noise-induced hearing loss in long-term health consequences, such as progression or development of Alzheimer's Disease (AD) has been suggested, the underlying mechanisms and behavioral and cognitive outcomes or therapeutic solutions to mitigate these changes remain understudied. This study aimed to characterize the association between blast exposure, hearing loss, and the progression of AD pathology, and determine the underlying mechanisms.

View Article and Find Full Text PDF

Background: Alzheimer's disease is a progressive form of dementia where cognitive capacities deteriorate due to neurodegeneration. Interestingly, Alzheimer's patients exhibit cognitive fluctuations during all stages of the disease. Though it is thought that contextual factors are critical for unlocking these hidden memories, understanding the neural basis of cognitive fluctuations has been hampered due to the lack of behavioral approaches to dissociate memories from contextual-performance.

View Article and Find Full Text PDF

Background: The pathological hallmark of Ménière's disease is endolymphatic hydrops, which can lead to an increase in basilar membrane stiffness and, consequently, an acceleration of the traveling wave of sound. The cochlear hydrops analysis masking procedure (CHAMP), which is an auditory brainstem response test masked at various frequencies with high-pass noise masking, uses the principle of the traveling wave velocity theory to determine the presence of endolymphatic hydrops.

Purpose: This study aimed to review the previous results of the CHAMP, expound the principles and key indicators, and discuss its clinical significance in diagnosing Ménière's disease.

View Article and Find Full Text PDF

Post mortem cadaveric and imaging mapping analysis of the influence of cochlear implants on cMRI assessment regarding implant positioning and artifact formation.

Eur Arch Otorhinolaryngol

December 2024

Department of Otorhinolaryngology - Head and Neck Surgery, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany.

Objectives: In times of an aging society and considering the escalating health economic costs, the indications for imaging, particularly magnetic resonance imaging (MRI), must be carefully considered and strictly adhered to. This cadaver study aims to examine the influence of cochlear implant (CI) on the assessment of intracranial structures, artifact formation, and size in cranial MRI (cMRI). Furthermore, it seeks to evaluate the potential limitations in the interpretability and diagnostic value of cMRI in CI patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!