Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The main idea of this paper is to approximate the exact p-value of a class of non-parametric, two-sample location-scale tests. In this paper, the most famous non-parametric two-sample location-scale tests are formulated in a class of linear rank tests. The permutation distribution of this class is derived from a random allocation design. This allows us to approximate the exact p-value of the non-parametric two-sample location-scale tests of the considered class using the saddlepoint approximation method. The proposed method shows high accuracy in approximating the exact p-value compared to the normal approximation method. Moreover, the proposed method only requires a few calculations and time, as in the case of the simulated method. The procedures of the proposed method are clarified through four sets of real data that represent applications for a number of different fields. In addition, a simulation study compares the proposed method with the traditional methods to approximate the exact p-value of the specified class of the non-parametric two-sample location-scale tests.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10543406.2024.2358810 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!