A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep learning restores speech intelligibility in multi-talker interference for cochlear implant users. | LitMetric

Deep learning restores speech intelligibility in multi-talker interference for cochlear implant users.

Sci Rep

North American Research Laboratory, MED-EL Corporation, Durham, NC, 27713, USA.

Published: June 2024

Cochlear implants (CIs) do not offer the same level of effectiveness in noisy environments as in quiet settings. Current single-microphone noise reduction algorithms in hearing aids and CIs only remove predictable, stationary noise, and are ineffective against realistic, non-stationary noise such as multi-talker interference. Recent developments in deep neural network (DNN) algorithms have achieved noteworthy performance in speech enhancement and separation, especially in removing speech noise. However, more work is needed to investigate the potential of DNN algorithms in removing speech noise when tested with listeners fitted with CIs. Here, we implemented two DNN algorithms that are well suited for applications in speech audio processing: (1) recurrent neural network (RNN) and (2) SepFormer. The algorithms were trained with a customized dataset ( 30 h), and then tested with thirteen CI listeners. Both RNN and SepFormer algorithms significantly improved CI listener's speech intelligibility in noise without compromising the perceived quality of speech overall. These algorithms not only increased the intelligibility in stationary non-speech noise, but also introduced a substantial improvement in non-stationary noise, where conventional signal processing strategies fall short with little benefits. These results show the promise of using DNN algorithms as a solution for listening challenges in multi-talker noise interference.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163011PMC
http://dx.doi.org/10.1038/s41598-024-63675-8DOI Listing

Publication Analysis

Top Keywords

dnn algorithms
16
noise
9
speech intelligibility
8
multi-talker interference
8
algorithms
8
non-stationary noise
8
neural network
8
removing speech
8
speech noise
8
rnn sepformer
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!