Background: Currently, there are many drugs available for the treatment of type 2 diabetes mellitus (T2DM), but most of them cause various side effects due to the need for long-term use. As a traditional Chinese medicine, Gegen Qinlian Decoction (GQD) has shown good efficacy and low side effects in the treatment of T2DM in both clinical and basic research. Based on relevant traditional Chinese medicine theories, dried ginger is innovatively added the formula of traditional GQD to create a modified GQD. This modification reduces the side effects of traditional GQD while exerting its therapeutic effect on T2DM. Previous studies have found that the modified GQD can regulate endoplasmic reticulum stress in the liver, inhibit hepatic gluconeogenesis, protect pancreatic islet β cells, and control blood sugar levels by inhibiting the FXR/neuronal ceramide signaling pathway. GQD can also regulate the intestinal microbiota to achieve therapeutic and protective effects in various gastrointestinal diseases. However, there is no research exploring whether the modified GQD achieves its therapeutic mechanism for T2DM by regulating the intestinal microbiota.
Purpose: To explore the mechanism of modified GQD in the treatment of T2DM based on multi-omics, focusing on its effect on the "intestinal flora bile acid TGR5'' axis.
Methods: The T2DM model was established using db/db mice, which were randomly divided into a model group, metformin group, high-dose GQD group, medium-dose GQD group, low-dose GQD group, while m/m mice were used as blank control. The drug intervention lasted for 12 weeks, during which the general conditions, oral glucose tolerance (OGT), blood glucose, and lipid-related indexes were recorded. Additionally, the fasting insulin (FINS), c-peptide, GLP-1 in serum, and cAMP in the ileum were measured by ELISA assay. Furthermore, the composition, abundance, and function of the intestinal microbiota were determined by macro genome sequencing, while bile acid was detected by targeted metabonomics. For histological evaluation, HE staining was used to observe the pathological changes of the ileum and pancreas, and the ultrastructure of the ileum and pancreas was observed by transmission electron microscopy. Apoptosis in the ileum tissue was detected by Tunel staining. Moreover, the mRNA and protein expressions of TGR5, PKA, CREB, PC1/3, GLP-1, and their phosphorylation levels in the ileum were detected by qPCR, immunohistochemistry, and Western blot; The expression of INS in the pancreas was also evaluated using immunohistochemistry. Finally, double immunofluorescence staining was used to detect the co-localization expression of TGR5 and GLP-1, NeuroD1, and GLP-1 in the ileum.
Results: The modified GQD was found to significantly reduce blood glucose, improve oral glucose tolerance, and blood lipid levels, as well as alleviate the injury of the ileum and pancreas in T2DM mice. Furthermore, modified GQD was found to effectively regulate intestinal flora, improve bile acid metabolism, activate the TRG5/cAMP/PKA/CREB signal pathway, and stimulate GLP-1 secretion.
Conclusion: GQD can regulate the "intestinal flora-bile acid-TGR5" axis and has a therapeutic effect on T2DM in mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2023.155329 | DOI Listing |
Chem Commun (Camb)
January 2025
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.
The shuttle effect of lithium polysulfides and non-ideal reaction kinetics restrict the development of high-energy-density lithium-sulfur (Li-S) batteries. Here, we report a graphene quantum dot (GQD)-modified CoO/NiCoO yolk-shell polyhedron as a sulfur host for Li-S batteries. GQDs shorten transport pathways of electrons, while strong binding of CoO and NiCoO to LiS, LiS and LiS are demonstrated from density functional theory calculations.
View Article and Find Full Text PDFSci Rep
December 2024
MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, India.
This paper demonstrates screen-printing technique, Glass Screen printed (GSP) on glass layer with Graphene Quantum Dots (GQDs) via drop casting approach to manufacture electrodes for Miniaturized Microbial Fuel Cells (MMFCs). MMFCs are viable options to sustainably operate low-power devices such as sensors, implantable medical devices, etc. However, the technology is still not fully mature for practical applications due to limitations of output power.
View Article and Find Full Text PDFDiscov Oncol
September 2024
Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
Background: Pancreatic and Gastric cancers are very aggressive and deadly types of cancer that require effective treatment strategies to stop their progression. Nano-drug delivery systems, like those using Auraptene-loaded GQD nanoparticles, play a crucial role in addressing this need by delivering targeted and controlled treatments to cancer cells, making treatment more effective, and reducing side effects. The study focused on investigating the effects of Auraptene, an efficient anticancer compound when loaded into Graphene Quantum Dots (GQDs) on types of human cancer cells.
View Article and Find Full Text PDFCrit Rev Ther Drug Carrier Syst
September 2024
Associate Professor of Pharmaceutics, Faculty of Health and Allied Sciences, Amity University Noida India, Pharmaceutics Domain, Uttar Pradesh, India; Member, Indian National Young Academy of Sciences (INYAS), INSA, New Delhi, India.
Enzymes play a pivotal role in the human body, but their potential is not limited to just that. Scientists have successfully modified these enzymes as nanobiocatalysts or nanozymes for industrial or commercial use, either in the food, medicine, biotech or even textile industries. These nanobiocatalysts and nanozymes offer several advantages over enzymes, like better stability, improved shelf-life, increased percentage yield, and reuse potential, which is very difficult with normal enzymes.
View Article and Find Full Text PDFAnal Methods
October 2024
Department of Chemistry, Gebze Technical University, Gebze 41400, Kocaeli, Turkey.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!