Hyperspectral imaging for identification of irregular-shaped microplastics in water.

Sci Total Environ

Department of Physics and Mathematics, Center for Photonics Sciences, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland.

Published: September 2024

In this article, we demonstrate detection and identification of ten microplastic types directly in a water sample using an identification table derived from microplastic hyperspectral images. We selected a total of fourteen wavelengths which can be used to distinguish these ten microplastic types. We enhanced the visibility of these wavelengths by computationally removing water and baseline correcting with reflectance at 1550 nm. This method avoids, prevents, and eases most of the laborious sample preparation mandatory prior to analysis with robust techniques such as Raman spectroscopy and Fourier transform infrared spectroscopy. The ten different plastics were studied in water, first separately and then in a mixture. The microplastic concentrations varied depending on microplastic type and were kept <12 mg/ml per type. Finally, detection and identification were confirmed pixel-wise in a hyperspectral image of a realistic water matrix simulant including mixtures of only a few microplastic particles. All measurements have been performed with microplastics of different sizes and irregular shapes made in-house by milling commercial pellets and sheets. It enabled the establishment of a procedure for the identification of these vicious particles in real water samples. The present measurement setup of hyperspectral imaging and method of data analysis of a mixture of microplastics directly from a water-based sample may open a path towards fast, reliable, and on-site detection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.173811DOI Listing

Publication Analysis

Top Keywords

ten microplastic
8
microplastic types
8
microplastic
5
hyperspectral imaging
4
imaging identification
4
identification irregular-shaped
4
irregular-shaped microplastics
4
water
4
microplastics water
4
water article
4

Similar Publications

First evidence of molecular response of the shrimp Hippolyte inermis to biodegradable microplastics.

J Hazard Mater

December 2024

Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Ischia Marine Centre, Via Francesco Buonocore, 42, Ischia 80077, Italy.

The increasing demand for sustainable alternatives to conventional plastics has propelled the interest in bioplastics. A few papers reported on the effects of plastics on crustaceans, but no indication about biodegradable polymers is available. Hippolyte inermis Leach, 1816 is a protandric shrimp commonly living on leaves of the seagrass Posidonia oceanica, in the Mediterranean Sea.

View Article and Find Full Text PDF

Microplastic contamination in the St. Lawrence River and Estuary (SLRE), Canada, poses potential risks to aquatic species. However, limited understanding of microplastic contamination in benthic fish, potentially more vulnerable than pelagic species, impedes effective risk assessment in this crucial ecosystem.

View Article and Find Full Text PDF

Purpose: This study aimed to report a case of microplastics (MPs) detection in a pterygium patient's tissue.

Case Report: A pterygium specimen was obtained from the right eye of a 43-year-old woman by surgical removal of a recurred pterygium. The number, morphology, and material type of the MPs in pterygium were identified using Raman microscopy and scanning electron microscopy.

View Article and Find Full Text PDF

Microplastics (MPs) seriously threaten soil quality and crop health, particularly in agricultural systems using plastic mulch and sewage sludge, with their abundance being strongly influenced by soil properties such as texture, structure, and chemical content. Considering this, the present study assessed MP contamination in arid agricultural soils, focusing on their abundance, morphology, composition, and association with heavy metals to evaluate environmental risks. Soil samples were collected from ten plastic-mulched fields and a control site across a 50 sq.

View Article and Find Full Text PDF

Microfibres released from textiles are one of the most common types of microplastics (MPs) found in the environment. Whether they are synthetic or natural, they can undergo degradation in different environmental matrices. This may result in the leaching of a variety of chemicals, mainly textile dyes and additives of high toxicity that need to be regulated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!