Astrocyte-specific activation of sigma-1 receptors in mPFC mediates the faster onset antidepressant effect by inhibiting NF-κB-induced neuroinflammation.

Brain Behav Immun

Beijing Institute of Basic Medical Sciences, Beijing, 100850, China; Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China. Electronic address:

Published: August 2024

Major depressive disorder (MDD) is a global health burden characterized by persistent low mood, deprivation of pleasure, recurrent thoughts of death, and physical and cognitive deficits. The current understanding of the pathophysiology of MDD is lacking, resulting in few rapid and effective antidepressant therapies. Recent studies have pointed to the sigma-1 (σ-1) receptor as a potential rapid antidepressant target; σ-1 agonists have shown promise in a variety of preclinical depression models. Hypidone hydrochloride (YL-0919), an independently developed antidepressant by our institute with faster onset of action and low rate of side effects, has recently emerged as a highly selective σ-1 receptor agonist; however, its underlying astrocyte-specific mechanism is unknown. In this study, we investigated the effect of YL-0919 treatment on gene expression in the prefrontal cortex of depressive-like mice by single-cell RNA sequencing. Furthermore, we knocked down σ-1 receptors on astrocytes in the medial prefrontal cortex of mice to explore the effects of YL-0919 on depressive-like behavior and neuroinflammation in mice. Our results demonstrated that astrocyte-specific knockdown of σ-1 receptor resulted in depressive-like behavior in mice, which was reversed by YL-0919 administration. In addition, astrocytic σ-1 receptor deficiency led to activation of the NF-κB inflammatory pathway, and crosstalk between reactive astrocytes and activated microglia amplified neuroinflammation, exacerbating stress-induced neuronal apoptosis. Furthermore, the depressive-like behavior induced by astrocyte-specific knockdown of the σ-1 receptor was improved by a selective NF-κB inhibitor, JSH-23, in mice. Our study not only reaffirms the σ-1 receptor as a key target of the faster antidepressant effect of YL-0919, but also contributes to the development of astrocytic σ-1 receptor-based novel drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbi.2024.06.008DOI Listing

Publication Analysis

Top Keywords

σ-1 receptor
24
depressive-like behavior
12
σ-1
9
faster onset
8
prefrontal cortex
8
astrocyte-specific knockdown
8
knockdown σ-1
8
astrocytic σ-1
8
receptor
6
antidepressant
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!