Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.132902 | DOI Listing |
Biofabrication
January 2025
Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, Center of Translational Oral Research (TOR), Bergen, Bergen, 5020, NORWAY.
A functional bioink with potential in bone tissue engineering must be subjected to critical investigation throughout its intended lifespan. The aim of this study was to develop alginate-gelatin-based (Alg-Gel) multicomponent bioinks systematically and to assess the short- and long-term exposure responses of human bone marrow stromal cells (hBMSCs) printed within these bioinks with and without crosslinking. The first generation of bioinks was established by incorporating a range of cellulose nanofibrils (CNFs), to evaluate their effect on viscosity, printability and cell viability.
View Article and Find Full Text PDFACS Nano
January 2025
College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065 Sichuan, China.
Ionic skin can mimic human skin to sense both temperature and pressure simultaneously. However, a significant challenge remains in creating precise ionic skins resistant to external stimuli interference when subjected to pressure. In this study, we present an innovative approach to address this challenge by introducing a highly anisotropic nanofluidic ionic skin (ANIS) composed of carboxylated cellulose nanofibril (CNF)-reinforced poly(vinyl alcohol) (PVA) nanofibrillar network achieved through a straightforward one-step hot drawing method.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran. Electronic address:
Outstanding properties of nanocellulose provide opportunities for novel applications in various fields, particularly tissue engineering. Despite of numerous useful characteristics of nanocellulose, its production methods suffer from the lack of control of morphology, high cost, and the use of organic solvents. On the other hand, hydrophilicity of nanocellulose is a significant challenge for its dispersion as a reinforcement in hydrophobic polymers matrix.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China. Electronic address:
Preparation of ion-conductive hydrogels with excellent mechanics, good conductivity and adhesiveness is promising for flexible sensors, but remains a challenge. Here, we prepare a self-adhesive and ion-conductive hydrogel by introducing cellulose nanofibers (CNF) and ZnSO into a covalently-crosslinked poly (acrylamide-co-2-acrylamide-2-methyl propane sulfonic acid) (P(AM-co-AMPS)) network. Owing to the hydrogen bonding and metal coordination interactions among P(AM-co-AMPS) chains, CNF, and Zn, the resulting P(AM-co-AMPS)/CNF/ZnSO hydrogel exhibits high stretchability (1092 %), high toughness (244 kJ m), and skin-like elasticity (3.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Biotransformation and Organic Biocatalysis Research Group, Department of Exact Sciences, Santa Cruz State University, 45654-370 Ilhéus, Brazil. Electronic address:
This study explored the synergistic combination of silver nanoparticles (AgNPs), eucalyptus-derived nanofibrillated cellulose (NFC) and cassava starch to develop bionanocomposites with advanced properties suitable for sustainable and antifungal packaging applications. The influence of AgNPs synthesized through a green method using cocoa bean shell combined with varying concentrations of NFC were investigated. Morphological (scanning electron microscopy and atomic force microscopy), optical (L*, C*, °hue, and opacity), chemical (Fourier transform infrared spectroscopy), mechanical (puncture force, tensile strength, and Young's modulus), rheological (flow curve and frequency sweeps, strain, and stress), barrier, and hydrophilicity properties (water vapor permeability, solubility, wettability, and contact angle), as well as the antifungal effect against pathogens (Botrytis cinerea, Penicillium expansum, Colletotrichum musae, and Fusarium semitectum), were analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!