Microparticles incorporating dual apoptotic factors to inhibit inflammatory effects in macrophages.

J Pharm Sci

Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA; Department of Biomedical Engineering, NC State/UNC, Chapel Hill, NC, USA; Department of Microbiology and Immunology, School of Medicine, UNC, Chapel Hill, NC, USA. Electronic address:

Published: November 2024

New approaches to treat autoimmune diseases are needed, and we can be inspired by mechanisms in immune tolerance to guide the design of these approaches. Efferocytosis, the process of phagocyte-mediated apoptotic cell (AC) disposal, represents a potent tolerogenic mechanism that we could draw inspiration from to restore immune tolerance to specific autoantigens. ACs engage multiple avenues of the immune response to redirect aberrant immune responses. Two such avenues are: phosphatidylserine on the outer leaflet of the cell and engaging the aryl hydrocarbon receptor (AhR) pathway. We incorporated these two avenues into one acetalated dextran (Ace-DEX) microparticle (MP) for evaluation in vitro. First phosphatidylserine (PS) was incorporated into Ace-DEX MPs and evaluated for cellular association and mediators of cell tolerance including IL-10 production and M2 associated gene expression when particles were cultured with peritoneal macrophages (PMacs). Further PS Ace-DEX MPs were evaluated as an agent to suppress LPS stimulated PMacs. Then, AhR agonist 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) was incorporated into Ace-DEX MPs and expression of M2 and IL-10 genes was evaluated in PMacs. Further the ITE and PS Ace-DEX MPs (PS/ITE MPs) were evaluated for suppression of T cell priming and Th1 polarization. Our results indicate that the PS/ITE-MPs stimulated anti-inflammatory cytokine expression and suppressed inflammation following LPS stimulation of PMacs. Moreover, PS/ITE MPs induced the anti-inflammatory enzyme IDO1 and suppressed macrophage-mediated T cell priming and Th1 polarization. These findings suggest that PS and ITE-loaded Ace-DEX MPs could be a promising therapeutic tool for suppressing inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560629PMC
http://dx.doi.org/10.1016/j.xphs.2024.05.030DOI Listing

Publication Analysis

Top Keywords

ace-dex mps
20
mps evaluated
12
immune tolerance
8
incorporated ace-dex
8
ps/ite mps
8
cell priming
8
priming th1
8
th1 polarization
8
mps
7
ace-dex
6

Similar Publications

Rapamycin (rapa), an immunosuppressive medication, has demonstrated considerable effectiveness in reducing organ transplant rejection and treating select autoimmune diseases. However, the standard oral administration of rapa results in poor bioavailability, broad biodistribution, and harmful off-target effects, necessitating improved drug delivery formulations. Polymeric microparticles (MPs) are one such solution and have demonstrated promise in pre-clinical studies to improve the therapeutic efficacy of rapa.

View Article and Find Full Text PDF

Unlabelled: In humans, seasonal influenza viruses cause epidemics. Avian influenza viruses are of particular concern because they can infect multiple species and lead to unpredictable and severe disease. Therefore, there is an urgent need for a universal influenza vaccine that provides protection against all influenza strains.

View Article and Find Full Text PDF

Microparticles incorporating dual apoptotic factors to inhibit inflammatory effects in macrophages.

J Pharm Sci

November 2024

Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA; Department of Biomedical Engineering, NC State/UNC, Chapel Hill, NC, USA; Department of Microbiology and Immunology, School of Medicine, UNC, Chapel Hill, NC, USA. Electronic address:

New approaches to treat autoimmune diseases are needed, and we can be inspired by mechanisms in immune tolerance to guide the design of these approaches. Efferocytosis, the process of phagocyte-mediated apoptotic cell (AC) disposal, represents a potent tolerogenic mechanism that we could draw inspiration from to restore immune tolerance to specific autoantigens. ACs engage multiple avenues of the immune response to redirect aberrant immune responses.

View Article and Find Full Text PDF

Influenza viruses cause a common respiratory disease known as influenza. In humans, seasonal influenza viruses can lead to epidemics, with avian influenza viruses of particular concern because they can infect multiple species and lead to unpredictable and severe disease. Therefore, there is an urgent need for a universal influenza vaccine that provides protection against seasonal and pre-pandemic influenza virus strains.

View Article and Find Full Text PDF
Article Synopsis
  • The traditional flu vaccines are made from inactivated viruses produced in chicken eggs, but this process is slow and can lead to mismatched strains, affecting vaccine efficacy.
  • Subunit-based vaccines offer quicker production but often need adjuvants like MF59, which primarily generates a helper T-cell type 2 (Th2) immune response, less optimal for strong protection against influenza.
  • A study used acetalated dextran (Ace-DEX) to create microparticles that effectively encapsulate the Th1-stimulating adjuvant cGAMP, demonstrating that these particles provide stronger immune responses compared to conventional adjuvants in mice.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!