This study focused on investigating the concentrations, compositional profiles, partitioning behaviors and spatial variations of organophosphate esters (OPEs) in the Pearl River (PR), South China Sea (SCS) region, to evaluate their environmental risks. ∑OPEs concentrations in the surface water of the PR ranged from 117.5 to 854.8 ng/L in the dissolved phase and from 0.5 to 13.3 ng/L in the suspended particulate matter. In the surface seawaters of the northern and western parts of the SCS, ∑OPEs concentrations were 1.3-17.6 ng/L (mean: 6.7 ± 5.2) and 2.3-24.4 ng/L (mean: 7.6 ± 5.5), respectively. The percentage of chlorinated OPEs in surface water samples from the PR to the SCS was 79 ± 15%. Tripentyl phosphate (TPeP) (average: 28.3%) and triphenylphosphate (TPhP) (average: 9.6%) exhibited significant particulate fraction. A significant negative correlation (p < 0.05) between salt concentration and OPE congeners in seawater suggested that river runoff predominantly introduced OPEs into the coastal waters of the SCS. The findings also showed higher levels of OPEs in the PR and estuary than in offshore waters. The OPE loading from the PR into the SCS was estimated to be ∼119 t y. The presence of TCEP (RQ = 2.1), TnBP (RQ = 0.48) and TPhP (RQ = 0.3) in PR water samples pose a high risk to aquatic organisms, whereas OPEs (RQ < 0.1) in SCS water samples do not pose a threat to aquatic organisms. This research emphasizes the environmental fate and impact of OPEs on surface waters of the PR and SCS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.142559 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!