This study investigated the physiological responses of two tropical seagrass species, Halophila ovalis and Thalassia hemprichii, to heat stress under varying light conditions in a controlled 5-day experiment. The experimental design included four treatments: control, saturating light, heat stress under sub-saturating light, and heat stress under saturating light (combined stress). We assessed various parameters, including chlorophyll fluorescence, levels of reactive oxygen species (ROS), antioxidant enzyme activities, and growth rates. In H. ovalis, heat stress resulted in a significant reduction in the maximum quantum yield of photosystem II (F/F) regardless of the light condition. However, the effects of heat stress on the effective quantum yield of photosystem II (ɸPSII) were more pronounced under saturating light conditions. In T. hemprichii, saturating irradiance exacerbated the heat stress effects on F/F and ɸPSII, although the overall photoinhibition was less severe than in H. ovalis. Heat stress led to ROS accumulation in H. ovalis and reduced the activity of superoxide dismutase (SOD) and ascorbate peroxidase in the sub-saturating light condition. Conversely, T. hemprichii exhibited elevated SOD activity under saturating light. Heat stress suppressed the growth of both seagrass species, regardless of the light environment. The Biomarker Response Index indicated that H. ovalis displayed severe effects in the heat stress treatment under both light conditions, while T. hemprichii exhibited moderate effects in sub-saturating light and major effects in saturating light conditions. However, the Effect Addition Index revealed an antagonistic interaction between heat stress and high light in both seagrass species. This study underscores the intricate responses of seagrasses, emphasizing the importance of considering both local and global stressors when assessing their vulnerability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marenvres.2024.106589 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!