Comparative effects of heat stress on photosynthesis and oxidative stress in Halophila ovalis and Thalassia hemprichii under different light conditions.

Mar Environ Res

Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Coastal Oceanography and Climate Change Research Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand. Electronic address:

Published: July 2024

This study investigated the physiological responses of two tropical seagrass species, Halophila ovalis and Thalassia hemprichii, to heat stress under varying light conditions in a controlled 5-day experiment. The experimental design included four treatments: control, saturating light, heat stress under sub-saturating light, and heat stress under saturating light (combined stress). We assessed various parameters, including chlorophyll fluorescence, levels of reactive oxygen species (ROS), antioxidant enzyme activities, and growth rates. In H. ovalis, heat stress resulted in a significant reduction in the maximum quantum yield of photosystem II (F/F) regardless of the light condition. However, the effects of heat stress on the effective quantum yield of photosystem II (ɸPSII) were more pronounced under saturating light conditions. In T. hemprichii, saturating irradiance exacerbated the heat stress effects on F/F and ɸPSII, although the overall photoinhibition was less severe than in H. ovalis. Heat stress led to ROS accumulation in H. ovalis and reduced the activity of superoxide dismutase (SOD) and ascorbate peroxidase in the sub-saturating light condition. Conversely, T. hemprichii exhibited elevated SOD activity under saturating light. Heat stress suppressed the growth of both seagrass species, regardless of the light environment. The Biomarker Response Index indicated that H. ovalis displayed severe effects in the heat stress treatment under both light conditions, while T. hemprichii exhibited moderate effects in sub-saturating light and major effects in saturating light conditions. However, the Effect Addition Index revealed an antagonistic interaction between heat stress and high light in both seagrass species. This study underscores the intricate responses of seagrasses, emphasizing the importance of considering both local and global stressors when assessing their vulnerability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2024.106589DOI Listing

Publication Analysis

Top Keywords

heat stress
44
light conditions
20
saturating light
20
light
14
stress
13
effects heat
12
seagrass species
12
light heat
12
sub-saturating light
12
heat
11

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!