Species variation in steroid hormone-related gene expression contributes to species diversity in sexually dimorphic communication in electric fishes.

Horm Behav

Department of Biology, Indiana University, 1001 E. 3(rd) St., Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, 409 N. Park Ave., Bloomington, IN 47505, USA. Electronic address:

Published: August 2024

Sexually dimorphic behaviors are often regulated by gonadal steroid hormones. Species diversity in behavioral sex differences may arise as expression of genes mediating steroid action in brain regions controlling these behaviors evolves. The electric communication signals of apteronotid knifefishes are an excellent model for comparatively studying neuroendocrine regulation of sexually dimorphic behavior. These fish produce and detect weak electric organ discharges (EODs) for electrolocation and communication. EOD frequency (EODf), controlled by the medullary pacemaker nucleus (Pn), is sexually dimorphic and regulated by androgens and estrogens in some species, but is sexually monomorphic and unaffected by hormones in other species. We quantified expression of genes for steroid receptors, metabolizing enzymes, and cofactors in the Pn of two species with sexually dimorphic EODf (Apteronotus albifrons and Apteronotus leptorhynchus) and two species with sexually monomorphic EODf ("Apteronotus" bonapartii and Parapteronotus hasemani). The "A." bonapartii Pn expressed lower levels of androgen receptor (AR) genes than the Pn of species with sexually dimorphic EODf. In contrast, the P. hasemani Pn robustly expressed AR genes, but expressed lower levels of genes for 5α-reductases, which convert androgens to more potent metabolites, and higher levels of genes for 17β-hydroxysteroid dehydrogenases that oxidize androgens and estrogens to less potent forms. These findings suggest that sexual monomorphism of EODf arose convergently via two different mechanisms. In "A." bonapartii, reduced Pn expression of ARs likely results in insensitivity of EODf to androgens, whereas in P. hasemani, gonadal steroids may be metabolically inactivated in the Pn, reducing their potential to influence EODf.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11330740PMC
http://dx.doi.org/10.1016/j.yhbeh.2024.105576DOI Listing

Publication Analysis

Top Keywords

sexually dimorphic
24
species sexually
16
species
8
species diversity
8
sexually
8
hormones species
8
expression genes
8
androgens estrogens
8
sexually monomorphic
8
dimorphic eodf
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!