Accurate identification of groundwater potential areas in arid regions is an important task for groundwater management and sustainability. As a result, this study used the innovative integration of remote sensing (RS), geographic information system (GIS), watershed modeling system (WMS), geophysical survey, and water mass balance equation to identify potential groundwater areas in the W. Dara, Eastern Desert, Egypt. A weighted spatial probability model (WSPM) of groundwater potential based on eight regulatory factors was implemented within ArcGIS software. Drainage density (DD), precipitation (P), net groundwater recharge (NGR), terrain slope (TS), lineament density (LD), lithologic group (LG), water quality (TDS), and depth to groundwater level (DGW) are the aspects considered. The Analytical hierarchy process (AHP) method was used to assign weights to these parameters, and their accuracy was estimated using the consistency ratio (CR). The resulting groundwater potential map classified W. Dara study area into five categories, ranging from very low to very high potential. A geophysical survey, in the form of Vertical Electrical Sounding (VES) and Transient Electromagnetic (TEM), was conducted along W. Dara to validate the results of the WSPM, which identified areas of high groundwater potential. The 1D inversion of VES/TEM shows that the central and western parts of W. Dara are considered the most promising areas for groundwater occurrence, and are located in areas of high and very high potential classes derived from WSPM. Moreover, the results of VES and TEM surveys showed that the proposed aquifers (Nubian Sandstone, Miocene, and Quaternary) in the study area are horizontally and vertically connected through a set of normal faults traversing NW-SE. Ten sites have been proposed for drilling additional exploitative wells in W. Dara area based on the WSPM and geophysical survey with the aim of sustainable development. Thus, the integrated techniques applied in this study proved effective in accurately determining the development strategy for arid and semi-arid coastal areas, especially those that suffer from scarcity of rainfall and increased agricultural reclamation requirements in remote areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.121243 | DOI Listing |
J Water Health
December 2024
Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Area of Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, Shaanxi 710054, China; School of Water and Environment, Chang'an University, No.126 Yanta Road, Xi'an, Shaanxi 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China E-mail:
Fluoride and nitrogen contamination is a global concern and has been a serious problem in agricultural areas. This study aims to identify the source of fluoride and nitrogen in the groundwater and assess groundwater quality and human health risks in the Guanzhong Plain, northwest China. The results showed that the concentrations were 0.
View Article and Find Full Text PDFChemosphere
December 2024
College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China. Electronic address:
Heavy metals released from metallic sulfidic tailings pose significant environmental threats by contaminating surface and groundwater in mining areas. Sustainable rehabilitation methods are essential to remove or stabilize these metals, improving the quality of acid mine drainage and minimizing pollution. This study examines the adsorption capacity of zinc ions (Zn) by different iron-silicate mineral groups under natural weathering and bacteria-regulated weathered conditions.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, China; State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China. Electronic address:
In dense nonaqueous phase liquid (DNAPL) contaminant source zones, aqueous concentrations of trichloroethene (TCE) in groundwater may approach saturation levels (8.4 mM). It is generally believed that such saturation concentrations are toxic to organohalide-respiring bacteria (OHRB), thus limiting the effectiveness of bioremediation.
View Article and Find Full Text PDFEnviron Pollut
December 2024
State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
The sulfate-reducing bacteria (SRB)-induced ferrihydrite transformation is an important cause for arsenic (As) contamination in the aquifer near mining area. Calcium carbonate (CaCO) is widespread and has the potential of regulating As fate directly or indirectly. However, the influence of CaCO on ferrihydrite transformation and the associated As mobilization/redistribution in SRB-containing environments remains unclear.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, PR China; College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, PR China. Electronic address:
Biological soil crusts (BSCs) are the main landscape on the Qinghai-Tibetan Plateau and an ecological indicator of human disturbance. Information about antibiotic resistomes in BSCs on the Qinghai-Tibetan Plateau can provide baseline for the risk assessment and management of resistomes and yet to be explored. This work investigated the profiles and geographic patterns of antibiotic resistomes in BSCs along the Lhasa River and their response to anthropogenic activities for the first time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!