Packaging material should guarantee the longest possible shelf life of food and help to maintain its quality. The aim of the study was to assess the physicochemical changes taking place during 28-day ageing of beef steaks packed in two types of multilayer films containing biodegradable polymers - polylactic acid (NAT/PLA) and Mater-Bi® (NAT/MBI). The control group consisted of steaks packed in synthetic polyamide/polyethylene (PA/PE) film. The samples stored in NAT/PLA had significantly lower purge loss than the control samples and the lowest expressible water amount after 14 and 21 days. Following blooming, the most favourable colour was shown in steaks stored in NAT/MBI, with the highest values for the L*, a* and C* parameters and the R630/580 ratio, a high proportion of oxymyoglobin, and the lowest share of metmyoglobin. All steaks, regardless of the type of packaging material, had acceptable tenderness and were stable in terms of lipid oxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meatsci.2024.109551DOI Listing

Publication Analysis

Top Keywords

packaging material
8
steaks packed
8
sustainable packaging
4
packaging materials
4
materials fresh
4
fresh beef
4
beef vacuum
4
vacuum packaging
4
packaging application
4
application product
4

Similar Publications

Biodegradation of plasticizers by novel strains of bacteria isolated from plastic waste near Juhu Beach, Mumbai, India.

Sci Rep

December 2024

Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.

Phthalic acid esters are pivotal plasticizers in various applications, including cosmetics, packaging materials, and medical devices. They have garnered significant attention from the scientific community due to their persistence in ecosystems. The multifaceted aspects of PAEs, encompassing leaching, transformation, and toxicity, underscore their prominence as primary components of anthropogenic waste.

View Article and Find Full Text PDF

Multifunctional nanocellulose hybrid films: From packaging to photovoltaics.

Int J Biol Macromol

December 2024

Physical Chemistry and Soft Matter, Wageningen University and Research, 6708 WE Wageningen, Netherlands. Electronic address:

This study aimed to develop eco-friendly multifunctional nanocellulose (NC) hybrid films with tailored properties for versatile applications including packaging and photovoltaics. Hybrid films composed by cellulose nanocrystals (CNC) and carboxymethylated cellulose nanofibrils (CNF) were produced at various mass ratio (CNC - 100:0 to 0:100). Montmorillonite clay (MTM) was incorporated (50 % by mass) into the CNC:CNF films.

View Article and Find Full Text PDF

Investigation of the Effects of Ozon and Propolis on the Healing of Bone Defects: An Experimental Study.

J Craniofac Surg

October 2024

Department of Oral and Maxillofacial Surgery, Dicle University, Faculty of Dentistry, Diyarbakir, Turkiye.

Background/aim: This study explores the effects of ozone and propolis on the healing of critically sized bone defects at both the histologic and molecular levels, and the locations and concentrations of osteopontin and osteonectin during healing; both proteins play roles during bone healing.

Materials And Methods: This study used 56 adult male Sprague-Dawley rats of an average weight of 350 g, divided into four groups of 14: a control group, a topical ozone group (O), a topical ozone + systemic propolis (O + PO) group, and a systemic propolis group (PO). Seven rats from each group were sacrificed at the end of week 4 and the other seven at the end of week 6.

View Article and Find Full Text PDF

TiZrMoC coatings were deposited on Si(100) substrates using a DC dual magnetron sputtering. The composition was controlled by adjusting the sputtering parameters of the TiZrMo and graphite targets. The influence of graphite target current on the resulting coating properties was explored.

View Article and Find Full Text PDF

Silicone gel, used in the packaging of high-voltage, high-power semiconductor devices, generates bubbles during the packaging process, which accelerates the degradation of its insulation properties. This paper establishes a testing platform for electrical treeing in silicone gel under pulsed electric fields, investigating the effect of pulse voltage amplitude on bubble development and studying the initiation and growth of electrical treeing in a silicone gel with different pulse edge times. The relationship between bubbles and electrical treeing in silicone gel materials is discussed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!