Dynamic soft tissue characterisation is an important element in robotic minimally invasive surgery. This paper presents a novel method by combining neural network with recursive least square (RLS) estimation for dynamic soft tissue characterisation based on the nonlinear Hunt-Crossley (HC) model. It develops a radial basis function neural network (RBFNN) to compensate for the error caused by natural logarithmic factorisation (NLF) of the HC model for dynamic RLS estimation of soft tissue properties. The RBFNN weights are estimated according to the maximum likelihood principle to evaluate the probability distribution of the neural network modelling residual. Further, by using the linearisation error modelled by RBFNN to compensate for the linearised HC model, an RBFNN-based RLS algorithm is developed for dynamic soft tissue characterisation. Simulation and experimental results demonstrate that the proposed method can effectively model the natural logarithmic linearisation error, leading to improved accuracy for RLS estimation of the HC model parameters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2024.106611 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!