Peri-implantitis and insufficient osseointegration are the principal challenges faced by dental implants at present. In order to fabricate dual-function dental implant materials possessing both antibacterial and osteogenic capabilities, this study incorporates the antimicrobial element Cu into the Ti40Nb alloy, developing a novel Ti40Nb-xCu alloy with antibacterial properties. Among them, Ti40Nb3Cu has the best overall performance. Compared to Ti40Nb, the tensile strength increased by 27.97%, reaching 613 MPa. Although the elongation rate has decreased from 23% to 13.5%, the antibacterial rates against S. aureus and P. gingivalis both exceed 85%. Furthermore, the surface of Ti40Nb-xCu alloy was then treated with micro-arc oxidation to enhance its bioactivity, thereby accelerating osseointegration. The results indicated that the MAO treatment retains the antibacterial properties of the Ti40Nb3Cu alloy while significantly promoting bone formation through its introduced porous coating, thus heralding it as a propitious candidate material for dental implant applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2024.106605DOI Listing

Publication Analysis

Top Keywords

micro-arc oxidation
8
dental implants
8
dental implant
8
ti40nb-xcu alloy
8
antibacterial properties
8
properties ti40nb3cu
8
alloy
5
antibacterial
5
characteristics novel
4
novel ti-40nb-xcu
4

Similar Publications

Titanium potassium oxalate had been mixed into the electrolyte to improve the anti-corrosion property of the micro arc oxidation coating on the surface of the aluminium alloy. The surface and cross-section of the coating at different titanium potassium oxalate concentrations had been observed by scanning electron microscopy, showing that when the titanium potassium oxalate concentration was 10 g/L, the coating compactness was better. Additionally, the element content of the coating had been studied by the energy dispersive spectrometer, and results proved that the coating consisted of Al, O, Ti, Si, and P.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focused on recovering oil from discarded lemon peel biomass and testing it as a gasoline substitute in engine blends at different volume ratios (10%, 20%, and 30%) using steam distillation for oil extraction.
  • - Using an endoscopic visualization approach, the research found that a 10% lemon peel oil blend offered higher thermal efficiency and lower emissions, while premixed combustion produced better combustion characteristics, leading to increased cylinder pressure.
  • - To enhance performance, a ceramic coating was applied to the piston using the micro-arc oxidation technique, which improved thermal efficiency by 3% and 4.69% for the 20% lemon peel oil blend compared to uncoated and pure gasoline engines, while also reducing hydrocarbon
View Article and Find Full Text PDF

Biodegradable metals offer significant advantages by reducing the need for additional surgeries following bone fixation. These materials, with their optimal mechanical and degradable properties, also mitigate stress-shielding effects while promoting biological processes essential for healing. This study investigated the in vitro and in vivo biocompatibility of ZK60 magnesium alloy coated with a micro-arc oxidative layer incorporated with cerium oxide nanoparticles in orthopedic implants.

View Article and Find Full Text PDF

The general trend of increasing life expectancy will consistently drive the demand for orthopedic prostheses. In addition to the elderly, the younger population is also in urgent need of orthopedic devices, as bone fractures are a relatively common injury type; it is important to treat the patient quickly, painlessly, and eliminate further health complications. In the field of traumatology and orthopedics, metals and their alloys are currently the most commonly used materials.

View Article and Find Full Text PDF

SLM Magnesium Alloy Micro-Arc Oxidation Coating.

Materials (Basel)

October 2024

Department of Material Science and Chemical, University of Shanghai for Science and Technology, Shanghai 200093, China.

In this study, we utilized Selective Laser Melting (SLM) technology to fabricate a magnesium alloy, and subsequently subject it to micro-arc oxidation treatment. We analyzed and compared the microstructure, elemental distribution, wetting angle, and corrosion resistance of the SLM magnesium alloy both before and after the micro-arc oxidation process. The findings indicate that the SLM magnesium alloy exhibits surface porosity defects ranging from 2% to 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!