Protocol to optimize the Rice-Vannucci rat pup model of perinatal asphyxia to ensure predictable hypoxic-ischemic cerebral lesions.

STAR Protoc

Center for Stem Cells & Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Biomedical Sciences Graduate Program, University of California San Diego, San Diego, La Jolla, CA 92037, USA. Electronic address:

Published: June 2024

AI Article Synopsis

  • The Rice-Vannucci model often leads to significant animal loss and inconsistent results due to high variability in injury among labs.
  • This new protocol achieves reliable hypoxic-ischemic brain injury in 10-day-old Wistar rat pups without causing any fatalities.
  • Key aspects of the procedure include careful control of timing and temperature during carotid artery ligation and hypoxia exposure to ensure successful outcomes.

Article Abstract

The Rice-Vannucci model in rodent pups is subject to substantial loss of animals, result inconsistency, and high lab-to-lab variability in extent and composition of induced injury. This protocol allows for highly predictable and reproducible hypoxic-ischemic cerebral injury lesions in post-natal day 10 Wistar rat pups with no mortality. We describe steps for common carotid artery ligation, brief post-operative normothermia, exposure to hypoxia, and post-hypoxic normothermia. Precise timing and temperature control in each step are crucial for a successful procedure. For complete details on the use and execution of this protocol, please refer to Hartman et al..

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11217776PMC
http://dx.doi.org/10.1016/j.xpro.2024.103025DOI Listing

Publication Analysis

Top Keywords

hypoxic-ischemic cerebral
8
protocol optimize
4
optimize rice-vannucci
4
rice-vannucci rat
4
rat pup
4
pup model
4
model perinatal
4
perinatal asphyxia
4
asphyxia ensure
4
ensure predictable
4

Similar Publications

Hypoxic ischemic encephalopathy (HIE) is a brain injury that occurs in 1 ~ 5/1000 term neonates. Accurate identification and segmentation of HIE-related lesions in neonatal brain magnetic resonance images (MRIs) is the first step toward identifying high-risk patients, understanding neurological symptoms, evaluating treatment effects, and predicting outcomes. We release the first public dataset containing neonatal brain diffusion MRI and expert annotation of lesions from 133 patients diagnosed with HIE.

View Article and Find Full Text PDF

Background: Hypoxic-ischemic encephalopathy (HIE) is still associated with death and sequelae including cerebral palsy and intellectual disability despite induced hypothermia. Biomarkers, as early predictive indicators of adverse outcomes, are lacking.

Aims: To investigate whether post-rewarming cerebrospinal fluid (CSF)-neuro-specific enolase (NSE) levels after hypothermia are associated with neurodevelopmental outcomes at age six years, alone or when combined with amplitude-integrated electroencephalography (aEEG) and brain magnetic resonance imaging (MRI), as neuroimaging and neurophysiological indicators, respectively.

View Article and Find Full Text PDF

Objectives: To build an early, prognostic model for adverse outcome in infants with hypoxic ischemic encephalopathy (HIE) receiving therapeutic hypothermia (TH) based on brain magnetic resonance images (MRI), electrophysiological tests and clinical assessments were performed during the first 5 days of life.

Methods: Retrospective study of 182 neonates with HIE and managed with TH. The predominant pattern of HIE brain injury on MRI performed following cooling was scored by neuroradiologists.

View Article and Find Full Text PDF

Preterm birth exposes the neonate to hypoxic-ischaemic and excitotoxic insults that impair neurodevelopment and are magnified by the premature loss of placentally supplied, inhibitory neurosteroids. The cerebellum is a neuronally dense brain region, which undergoes critical periods of development during late gestation, when preterm births frequently occur. We propose that neurosteroid replacement therapy using tiagabine and zuranolone will protect the cerebellum against preterm-associated insults.

View Article and Find Full Text PDF

Background/objectives: Cardiac arrest may cause significant hypoxic-ischemic injury leading to coma, seizures, myoclonic jerks, or status epilepticus. Mortality is high, but accurate prognostication is challenging. A multimodal approach is employed, in which electroencephalography (EEG) forms a key part with several recognised patterns of prognostic significance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!