The reservoir's properties are required for proper reservoir simulation, which also involves uncertainties. Experimental methods to estimate the relative permeability and capillary pressure data are expensive and time-consuming. This study aims to determine the relative permeability and capillary pressure functions of a sandstone core in the presence and absence of clay during low-salinity water floods. The data were provided by automatic history matching the results from previously lab-reported studies through coupling a simulator with the particle swarm optimization algorithm. Correlations were proposed using multiple-linear regression for relative permeability and capillary pressure parameters at low-salinity conditions. They were validated against experimental results of no clay and clayey formation with regression of 95% and 97%. To assign one curve of relative permeability and capillary pressure to the grid cells of the simulator, averaging techniques were implemented. The effect of salinity and clay content on the obtained curves was investigated. Changing salinity from 42000 to 4000 ppm, the reduction in water relative permeability appeared to be higher than the oil relative permeability increment. Moreover, a noticeable shift in the relative permeability curves toward the highest saturations related to the clay content was observed. The proposed hybrid method could be a suitable tool to estimate the relative permeability and capillary pressure functions of the water-based EOR methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11162489 | PMC |
http://dx.doi.org/10.1038/s41598-024-61168-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!