Diverse neuro-imaging techniques measure different aspects of neural responses with distinct spatial and temporal resolutions. Relating measured neural responses across different methods has been challenging. Here, we take a step towards overcoming this challenge, by comparing the nonlinearity of neural dynamics measured across methods. We used widefield voltage-sensitive dye imaging (VSDI) to measure neural population responses in macaque V1 to visual stimuli with a wide range of temporal waveforms. We found that stimulus-evoked VSDI responses are surprisingly near-additive in time. These results are qualitatively different from the strong sub-additive dynamics previously measured using fMRI and electrocorticography (ECoG) in human visual cortex with a similar set of stimuli. To test whether this discrepancy is specific to VSDI-a signal dominated by subthreshold neural activity, we repeated our measurements using widefield imaging of a genetically encoded calcium indicator (GcaMP6f)-a signal dominated by spiking activity, and found that GCaMP signals in macaque V1 are also near-additive. Therefore, the discrepancies in the extent of sub-additivity between the macaque and the human measurements are unlikely due to differences between sub- and supra-threshold neural responses. Finally, we use a simple yet flexible delayed normalization model to capture these different dynamics across measurements (with different model parameters). The model can potentially generalize to a broader set of stimuli, which aligns with previous suggestion that dynamic gain-control is a canonical computation contributing to neural processing in the brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11162458PMC
http://dx.doi.org/10.1038/s41598-024-63685-6DOI Listing

Publication Analysis

Top Keywords

dynamics measured
12
neural responses
12
neural
8
neural dynamics
8
macaque human
8
set stimuli
8
signal dominated
8
responses
5
disparate nonlinear
4
nonlinear neural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!