A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of polystyrene nanoplastic size on zebrafish embryo development. | LitMetric

Polystyrene nanoplastics (PS) require a comprehensive evaluation of their toxicity and potential risks to humans and the environment. The zebrafish model, a well-established animal model increasingly utilized for nanotoxicity assessments, was employed in this study. Our research aimed to explore the toxic effects of PS with sizes of 30, 100, 200, and 450 nm on zebrafish embryos. Exposure experiments were conducted on embryos at 4 h post-fertilization (hpf) using various concentrations of nanoparticles (20, 40, 60, 80, and 100 mg/L) until 96 hpf. Notably, PS ranging from 100 to 450 nm did not adversely affect zebrafish embryo development. However, PS with a size of 30 nm at a concentration of 100 mg/L resulted in embryo mortality but not embryonic malformations. Furthermore, our investigation confirmed the uptake of these nanoparticles by zebrafish larvae following the opening of their mouths, with the particles being found predominantly in the digestive system of the larvae. Additionally, 30 nm PS were found to significantly modulate the expression levels of genes associated with oxidative stress and apoptosis. These findings highlight the developmental impacts of 30 nm PS on zebrafish embryos, raising concerns about potential similar consequences in humans. Considering our findings, it is essential to encourage further research into the management and regulation of PS to mitigate their potential environmental and health impacts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2024.105868DOI Listing

Publication Analysis

Top Keywords

zebrafish embryo
8
embryo development
8
zebrafish embryos
8
zebrafish
6
effects polystyrene
4
polystyrene nanoplastic
4
nanoplastic size
4
size zebrafish
4
development polystyrene
4
polystyrene nanoplastics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!