Greenhouse gas emission from the activities of all productive sectors is currently a topic of foremost importance. The major contributors in the livestock sector are ruminants, especially dairy cows. This study aimed to evaluate and compare 21 equations for predicting enteric methane emissions (EME) developed on the basis of milk traits and fatty acid profiles, which were selected from 46 retrieved through a literature review. We compiled a reference database of the detailed fatty acid profiles, determined by GC, of 992 lactating cows from 85 herds under 4 different dairy management systems. The cows were classified according to DIM, parity order, and dairy system. This database was the basis on which we estimated EME using the selected equations. The EME traits estimated were methane yield (20.63 ± 2.26 g/kg DMI, 7 equations), methane intensity (16.05 ± 2.76 g/kg of corrected milk, 4 equations), and daily methane production (385.4 ± 68.2 g/d, 10 equations). Methane production was also indirectly calculated by multiplying the daily corrected milk yield by the methane intensity (416.6 ± 134.7 g/d, 4 equations). We also tested for the effects of DIM, parity, and dairy system (as a correction factor) on the estimates. In general, we observed little consistency among the EME estimates obtained from the different equations, with exception of those obtained from meta-analyses of a range of data from different research centers. We found all the EME predictions to be highly affected by the sources of variation included in the statistical model: DIM significantly affected the results of 19 of the 21 equations, and parity order influenced the results of 13. Different patterns were observed for different equations with only some of them in accordance with expectations based on the cow's physiology. Finally, the best predictions of daily methane production were obtained when a measure of milk yield was included in the equation or when the estimate was indirectly calculated from daily milk yield and methane intensity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2024-24814 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!