Background: Left ventricular (LV) unloading by Impella, an intravascular microaxial pump, has been shown to exert dramatic cardioprotective effects in acute clinical settings of cardiovascular diseases. Total Impella support (no native LV ejection) is far more efficient in reducing LV energetic demand than partial Impella support, but the manual control of pump speed to maintain stable LV unloading is difficult and impractical. We aimed to develop an Automatic IMpella Optimal Unloading System (AIMOUS), which controls Impella pump speed to maintain LV unloading degree using closed-feedback control. We validated the AIMOUS performance in an animal model.
Methods: In dogs, we identified the transfer function from pump speed to LV systolic pressure (LVSP) under total support conditions (n = 5). Using the transfer function, we designed the feedback controller of AIMOUS to keep LVSP at 40 mmHg and examined its performance by volume perturbations (n = 9). Lastly, AIMOUS was applied in the acute phase of ischemia-reperfusion in dogs. Four weeks after ischemia-reperfusion, we assessed LV function and infarct size (n = 10).
Results: AIMOUS maintained constant LVSP, thereby ensuring a stable LV unloading condition regardless of volume withdrawal or infusion (±8 ml/kg from baseline). AIMOUS in the acute phase of ischemia-reperfusion markedly improved LV function and reduced infarct size (No Impella support: 13.9 ± 1.3 vs. AIMOUS: 5.7 ± 1.9%, P < 0.05).
Conclusions: AIMOUS is capable of maintaining optimal LV unloading during periods of unstable hemodynamics. Automated control of Impella pump speed in the acute phase of ischemia-reperfusion significantly reduced infarct size and prevented subsequent worsening of LV function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijcard.2024.132244 | DOI Listing |
Front Cardiovasc Med
January 2025
School of Medicine, Vita-Salute San Raffaele University, Milan, Italy.
Although mortality risk prediction in cardiogenic shock (CS) is possible, assessing the impact of the multitude of therapeutic efforts on outcomes is not straightforward. We assessed whether a temporary mechanical circulatory support comprehensive approach to the treatment of CS may reduce 30-day mortality as compared to expected mortality predicted by the recently proposed Cardiogenic Shock Score (CSS). Consecutive CS patients supported by pVAD Impella (Abiomed, Danvers, MA) at two national referral centers were included.
View Article and Find Full Text PDFActa Bioeng Biomech
June 2024
1Department of Biomedical Engineering, Hefei University of Technology, Hefei, People's Republic of China.
: The utilization of intra-aortic balloon pump (IABP) and Impella has been suggested as means of left ventricular unloading in veno-arterial extracorporeal membrane oxygenation (VA-ECMO) patients. This study aimed to assess the local hemodynamic alterations in VA-ECMO patients through simulation analyses. : In this study, a 0D-3D multiscale model was developed, wherein resistance conditions were employed to define the flow-pressure relationship.
View Article and Find Full Text PDFHeart Vessels
January 2025
Division of Cardiology, Mitsui Memorial Hospital, Kanda-Izumicho 1, Chiyoda-ku, Tokyo, 101-8643, Japan.
The concomitant use of IMPELLA and veno-arterial extracorporeal membrane oxygenation (V-A ECMO) (ECPELLA) has been increasingly used to treat severe cardiogenic shock. However, the relationship between severity of heart failure on admission and prognosis based on differences in the mechanical circulatory support (MCS) is not fully understood. This study evaluated the association between lactate levels on admission and clinical outcomes based on differences in MCS.
View Article and Find Full Text PDFHeart Vessels
January 2025
Saitama Sekishinkai Hospital, 2-37-20 Irumagawa, Sayama, Saitama, Japan.
Postinfarction ventricular septal rupture (PIVSR) is a rare but serious complication of acute myocardial infarction. Determining how to conduct surgical repair safely is critical. We compared the outcomes of Impella and intra-aortic balloon pump (IABP) implantation during perioperative mechanical circulatory support management in patients with PIVSR (n = 22).
View Article and Find Full Text PDFAm J Cardiol
January 2025
Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, USA. Electronic address:
Background: The benefit of mechanical circulatory support (MCS) with Impella (Abiomed, Inc, Danvers, MA) for patients undergoing non-emergent, high-risk percutaneous coronary intervention (HR-PCI) is unclear and currently the subject of a large randomized clinical trial (RCT), PROTECT IV. While contemporary registry data from PROTECT III demonstrated improvement of outcomes with Impella when compared with historical data (PROTECT II), there is lack of direct comparison to the HR-PCI cohort that did not receive Impella support.
Methods: We retrospectively identified patients from our institution meeting PROTECT III inclusion criteria (left ventricular ejection fraction [LVEF] <35% with unprotected left main or last remaining vessel or LVEF <30% undergoing multivessel PCI), and compared this group (NonIMP) to the published outcomes data from the PROTECT III registry (IMP).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!