A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design and synthesis of a library of C8-substituted sulfamidoadenosines to probe bacterial permeability. | LitMetric

Design and synthesis of a library of C8-substituted sulfamidoadenosines to probe bacterial permeability.

Bioorg Med Chem Lett

Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Pharmacology Graduate Program, Weill Cornell Graduate School, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA. Electronic address:

Published: September 2024

Gram-negative bacteria pose a major challenge in antibiotic drug discovery because their cell envelope presents a permeability barrier that affords high intrinsic resistance to small-molecule drugs. The identification of correlations between chemical structure and Gram-negative permeability would thus enable development of predictive tools to facilitate antibiotic discovery. Toward this end, have advanced a library design paradigm in which various chemical scaffolds are functionalized at different regioisomeric positions using a uniform reagent set. This design enables decoupling of scaffold, regiochemistry, and substituent effects upon Gram-negative permeability of these molecules. Building upon our recent synthesis of a library of C2-substituted sulfamidoadenosines, we have now developed an efficient synthetic route to an analogous library of regioisomeric C8-substituted congeners. The C8 library samples a region of antibiotic-relevant chemical space that is similar to that addressed by the C2 library, but distinct from that sampled by a library of analogously substituted oxazolidinones. Selected molecules were tested for accumulation in Escherichia coli in a pilot analysis, setting the stage for full comparative evaluation of these libraries in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361631PMC
http://dx.doi.org/10.1016/j.bmcl.2024.129844DOI Listing

Publication Analysis

Top Keywords

synthesis library
8
gram-negative permeability
8
library
7
design synthesis
4
library c8-substituted
4
c8-substituted sulfamidoadenosines
4
sulfamidoadenosines probe
4
probe bacterial
4
permeability
4
bacterial permeability
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!