Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The Finnish Archipelago Sea (AS) has long been subject to intensive anthropogenic phosphorus (P) loading. The area suffers from seasonal hypoxia and cyanobacterial blooms despite reductions in nutrient discharge from the catchment and point sources. Internal loading may even dominate the P budget. Previous estimates of internal P loading have limitations (e.g., in spatial coverage and infrequent measurements). We present the first area-wide estimates of the magnitude of internal P loading based on the long-term release of P stored in the sediments. Modelling the internal P loading in the AS is challenging due to the complexity of biogeochemical processes in the sediment-water interface, as well as the heterogenic topography of the seafloor. Instead, we calculated estimates of internal P loading based on data from previous studies on sequential chemical extraction of sediment P, sediment physical characteristics (e.g., organic content, location of muddy seabed substrates), and near-bottom oxygen (O) conditions. The estimates in three scenarios of contrasting O conditions were based on potentially mobile P pools in the sediments, recycled from sediment to water (i.e., loosely-bound or exchangeable P, P bound to reducible iron oxy(hydr)oxides, and labile organic P). The potentially mobile P pools were determined by chemical extraction methods (modified from Psenner et al., 1984 and Ruttenberg, 1992). The internal P loading under presumable O conditions was estimated to be fivefold that of waterborne P input to the AS; comparable to previous estimates for hypoxic areas in the Baltic Sea. Our estimates revealed wide spatial variability in the internal P loading, depending on O conditions and seabed sediment substrate. The site-specific P release estimates are included in a water quality model used by regional authorities, which increases the model's reliability for estimating the impact of human activities on the water quality across the AS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.173717 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!