To study the pollutants immobilization and economy of biologically amended coastal soil, Alternanthera philoxeroides biomass (Bm), biochar (Bc), and dodecyldimethyl betaine (BS) modified Bc (BS-Bc) were used to amend coastal soil from Jialing, Fu, and Qu River. A runoff experiment was used to simulate the longitudinal migration and morphological changes of Pb(II) and chlortetracycline (CTC) in each amended coastal soil, and the economy of pollutants immobilization by different amended coastal soil were compared. The equilibrium time of Pb(II) and CTC in each amended coastal soil ranked in the order of BS-Bc-amended > Bc-amended > Bm-amended > unamended coastal soil. The average Pb(II) and CTC flow rate in different amended coastal soils presented an opposite trend with the equilibrium time. Pb(II) and CTC content all reduced with the increasing runoff length. Under the same soils, the content changes presented Bm and Bc amended > unamended > BS-Bc amended. CEC and clay content of coastal soils were the key factors affecting Pb(II) and CTC immobilization. The immobilization mechanisms were electrostatic attraction, ion exchange, surface precipitation, and complexation to Pb(II) and ion exchange and complexation to CTC. The economy of Pb(II) and CTC immobilization ranged from 0.5 to 9.0 and from 1.0 to 5.4 mg/¥, and coastal soil amended by BS-Bc had practical application value and high economy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconhyd.2024.104381 | DOI Listing |
Sci Total Environ
January 2025
Department of Biology, Ecology and Earth Sciences (DIBEST), University of Calabria, Ponte Bucci street, cube 15B, 87036 Rende, Italy.
The work aims to estimate natural greenhouse gas emissions from soils in the Sibari Coastal Plain (Southern Italy), to understand (i) the contribution in terms of the total amount of CO and CH emitted in non-volcanic areas, (ii) the relationship among emitted gas, land use, organic matter and tectonic structures, and (iii) their potential environmental implications. Data were elaborated with statistical and geostatistical methods to separate the different populations and obtain prediction and probability maps. Methane fluxes had values consistently below the detection limit (0.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China.
Halotolerant plant growth-promoting bacteria (HT-PGPB) have attracted considerable attention for their significant potential in mitigating salt stress in crops. However, the current exploration and development of HT-PGPB remain insufficient to meet the increasing demands of agriculture. In this study, an HT-PGPB isolated from coastal saline-alkali soil in the Yellow River Delta was identified as J2-5-19.
View Article and Find Full Text PDFMicroorganisms
January 2025
Xianghu Laboratory, Hangzhou 311231, China.
Over the past four decades, biofertilizers, which are microbial formulations based on species, have significantly contributed to sustainable agriculture by enhancing crop growth, improving soil health, and reducing the dependency on chemical fertilizers. species, particularly known for their ability to promote plant growth, fix nitrogen, solubilize phosphorus, and produce growth-promoting substances such as phytohormones and antibiotics, have emerged as key players in the development of eco-friendly agricultural solutions. This research utilizes bibliometric analysis based on 3,242 documents sourced from the Web of Science database to map the development, key contributions, and innovation within the field from 1985 to 2023.
View Article and Find Full Text PDFBiology (Basel)
January 2025
School of Tropical Agriculture and Forestry, Hainan University, Haikou 570100, China.
Against the backdrop of a changing global climate, the soil environment may undergo significant changes, directly affecting agricultural productivity and exacerbating global food security issues. Three different substrates were set up in this study, namely, S (high sand and low nutrient content), T (medium sand and medium nutrient content), and TT (low sand and high nutrient content). The results showed that the root/shoot ratio increased as the sand content increased (nutrient content decreased).
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.
Maintaining the stability of ecosystems is critical for supporting essential ecosystem services over time. However, our understanding of the contribution of the diverse biotic and abiotic factors to this stability in wetlands remains limited. Here, we combined data from a field vegetation survey of 725 herbaceous wetland sites in China with remote sensing information from the Enhanced Vegetation Index (EVI) from 2010 to 2020 to explore the contribution of biotic and abiotic factors to the temporal stability of primary productivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!