The design of pre-catalysts and the rational manipulation of corresponding electrochemical reconstruction are vitally important to construct the highly durable and active catalysts for seawater oxidation, but rather challenging. Herein, a novel core-shell catalyst of Co(PS)@CoP (labeled as CoPS) by epitaxial growth of amorphous cobalt phosphide (CoP) on crystalline cobalt phosphorous trichalcogenide (Co(PS)) is firstly designed as a pre-catalyst for alkaline seawater oxidation. Various characterization techniques are employed to demonstrate that the unique amorphous-crystalline nanowire structure (CoPS) achieves the rapid surface reconstruction into active CoOOH and diversiform oxyanions species (labeled as CoPS-R). Theoretical simulations uncover that the in situ derived oxyanions (PO, SO and SO) on the surface of CoOOH can tune the electron distribution of Co site, thereby optimizing the chemisorption of oxygen evolution reaction (OER) intermediates on CoOOH and reducing the energy barrier of determining step. Consequently, in an alkaline natural seawater solution, the reconstructed CoPS-R catalyst exhibits small overpotentials of 357 and 402 mV for OER at 200 and 500 mA cm, respectively, together with an impressive durability over 500 h at a large current density of 500 mA cm benefiting from the strong repulsive effect of the derived PO, SO and SO oxyanions. This work offers a new insight for comprehending the relationship of structure-composition-activity and develops a new approach toward the construction of efficient and robust OER catalysts for seawater electrolysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.06.021 | DOI Listing |
Sci Rep
January 2025
Department of Botany, Smithsonian Institution, National Museum of Natural History, Washington, DC, 20013, USA.
The Gulf of Maine holds significant ecological and economic value for fisheries and communities in north-eastern North America. However, there is apprehension regarding its vulnerability to the effects of increasing atmospheric CO. Substantial recent warming and the inflow of low alkalinity waters into the Gulf of Maine have raised concerns about the impact of ocean acidification on resident marine calcifiers (e.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China.
The scarcity of freshwater resources and the treatment of dye wastewater have emerged as unavoidable challenges that need to be addressed. The combination of solar-driven interfacial evaporation, photocatalytic degradation, and superhydrophobic surface provides an effective approach for seawater desalination and the treatment of organic dyes. In this study, we fabricated a multifunctional synergistic solar evaporator by depositing cupric oxide nanoparticles onto polypyrrole (PPy) coating and subsequently modified it with a hydrophobic agent successfully.
View Article and Find Full Text PDFEnviron Pollut
January 2025
CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
Corrosion significantly affects the maritime industry. To address this issue, corrosion inhibitors are incorporated into polymeric coatings. However, some state-of-the-art inhibitors are toxic, prone to spontaneous leaching, and interact with coating components.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. Electronic address:
Harnessing ionic gradients to generate electricity has inspired the development of nanofluidic membranes with charged nanochannels for osmotic energy conversion. However, achieving high-performance osmotic energy output remains elusive due to the trade-off between ion selectivity and nanochannel membrane permeability. In this study, we report a homogeneous nanofluidic membrane, composed of sulfonated nanoporous carbon (SPC) and TEMPO-oxidized cellulose nanofibers (T-CNF), engineered to overcome these limitations.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China. Electronic address:
Defect engineering is considered one of the most powerful strategies for regulating the catalytic activity of electrocatalysts. A deep understanding of the defect-involved mechanism in electrocatalytic process is of great importance but remains a challenging task. In this study, an anionic Se-vacancy (V) was introduced into iron diselenide (FeSe) nanoarrays, enabling the catalyst to exhibit improved electrocatalytic performance for sulfion oxidation reaction (SOR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!