Liquid metal nanoparticles as photo-initiators for preparation of transparent hydrogel with adjustable mechanical properties.

J Colloid Interface Sci

State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China. Electronic address:

Published: October 2024

To achieve rapid preparation of hydrogels without using conventional chemical initiators, a stable suspension of eutectic gallium indium (EGaIn) liquid metal nanoparticles is explored by probe-sonicating the metal in an aqueous solution. Liquid metal suspension was sonicated to serve as a photo-initiator for acrylamide polymerization and produce hydrogels. The initiation effect comes from the fact that liquid metal suspension after sonication can produce a large number of free radicals when exposed to ultraviolet (UV) radiation, leading to initiation. The changes of liquid metal nanodroplets under UV light irradiation have been systematically investigated. Further, the liquid metal colloidal solutions were used to prepare hydrogels with the same transparency and adjustable mechanical properties as the samples initiated by commercial photo-initiators. This work shows the great application potential of liquid metal in the preparation of hydrogels and provides a new technical idea for the design of multifunctional hydrogels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.06.007DOI Listing

Publication Analysis

Top Keywords

liquid metal
28
metal nanoparticles
8
adjustable mechanical
8
mechanical properties
8
preparation hydrogels
8
metal suspension
8
liquid
7
metal
7
hydrogels
5
nanoparticles photo-initiators
4

Similar Publications

Polymer electrolyte membrane water electrolyzers (PEMWEs) are a critical technology for efficient hydrogen production to decarbonize fuels and industrial feedstocks. To make hydrogen cost-effective, the overpotentials across the cell need to be decreased and platinum-group metal loading reduced. One overpotential that needs to be better understood is due to mass transport limitations from bubble formation within the porous transport layer (PTL) and anode catalyst layer (ACL), which can lead to a reduction in performance at typical operating current densities.

View Article and Find Full Text PDF

Liquid crystal elastomers (LCEs) with various deformation properties based on phase transition were widely used as actuators and provided potential to fabricate functional surfaces with tunable microstructure. Herein, we demonstrate a strategy to fabricate dynamic micro wrinkles on LCE surfaces based on LC phase transition. Stable micron-sized surface wrinkles on the anthracene-containing LCE film (AnLCE) are fabricated by ultraviolet exposure induced gradient cross-linking and subsequently stretching-releasing (UV-SR).

View Article and Find Full Text PDF

Water-Mediated Proton Hopping Mechanisms at the SnO(110)/HO Interface from Ab Initio Deep Potential Molecular Dynamics.

Precis Chem

December 2024

State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

The interfacial proton transfer (PT) reaction on the metal oxide surface is an important step in many chemical processes including photoelectrocatalytic water splitting, dehydrogenation, and hydrogen storage. The investigation of the PT process, in terms of thermodynamics and kinetics, has received considerable attention, but the individual free energy barriers and solvent effects for different PT pathways on rutile oxide are still lacking. Here, by applying a combination of ab initio and deep potential molecular dynamics methods, we have studied interfacial PT mechanisms by selecting the rutile SnO(110)/HO interface as an example of an oxide with the characteristic of frequently interfacial PT processes.

View Article and Find Full Text PDF

Synergy of Copper Doping and Carbon Defect Engineering in Promoting C-C Coupling for Enhanced CO Photoreduction to Ethanol Activity.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Industrial Ecology and Environment Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.

Photocatalytic conversion of carbon dioxide (CO) to fuel provides an ideal pathway to achieving carbon neutrality. One significant hindrance in achieving the reduction of CO to higher energy density multicarbon products (C) was the difficulty in coupling C-C bonds efficiently. Copper (Cu) is considered the most suitable metal catalyst for C-C coupling to form C products in the CO reduction reaction (CORR), but it encounters challenges such as low product selectivity and slow catalytic efficiency.

View Article and Find Full Text PDF

This study reviewed the recovery of humic substances (HS) from anaerobic digestate of sludge as a potential fertilizer, focusing on the quantification of HS, the efficiency of HS recovery, and its interaction with pollutants. The potential pitfalls of current misunderstanding for HS quantification in sludge were pointed out. HS present in sludge showed potential to be used as a fertilizer, which solubilized insoluble phosphates for enhanced soil fertility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!