Design, synthesis, biological evaluation, and in silico studies of novel pyridopyridine derivatives as anticancer candidates targeting FMS kinase.

Eur J Med Chem

Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt. Electronic address:

Published: August 2024

Design and synthesis of novel 4-carboxamidopyrido[3,2-b]pyridine derivatives as novel rigid analogues of sorafenib are reported herein. The target compounds showed potent antiproliferative activities against a panel of NCI-60 cancer cell lines as well as hepatocellular carcinoma cell line. Compounds 8g and 9f were among the most promising derivatives in terms of effectiveness and safety. Therefore, they were further examined to demonstrate their ability to induce apoptosis and alter cell cycle progression in hepatocellular carcinoma cells. The most potent compounds were tested against a panel of kinases that indicated their selectivity against FMS kinase. Compounds 8g and 8h showed the most potent activities against FMS kinase with IC values of 21.5 and 73.9 nM, respectively. The two compounds were also tested in NanoBRET assay to investigate their ability to inhibit FMS kinase in cells (IC = 563 nM (8g) and 1347 nM (8h) vs. IC = 1654 nM for sorafenib). Furthermore, compounds 8g and 8h possess potent inhibitory activities against macrophages when investigated in bone marrow-derived macrophages (BMDM) assay (IC = 56 nM and 167 nM, respectively, 164 nM for sorafenib). The safety and selectivity of these compounds were confirmed when tested against normal cell lines. Their safety profile was further confirmed using hERG assay. In silico studies were carried out to investigate their binding modes in the active site of FMS kinase, and to develop a QSAR model for these new motifs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2024.116557DOI Listing

Publication Analysis

Top Keywords

fms kinase
20
design synthesis
8
silico studies
8
compounds potent
8
cell lines
8
hepatocellular carcinoma
8
compounds tested
8
compounds
7
fms
5
kinase
5

Similar Publications

The crosstalk between cancers and the immune microenvironment plays a critical role in malignant progression. FMS-like tyrosine kinase 3 (FLT3) is a frequently mutated gene in acute myeloid leukemia (AML). However, its role in solid cancers remains poorly understood.

View Article and Find Full Text PDF

An overview of small-molecule agents for the treatment of psoriasis.

Bioorg Med Chem

January 2025

Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510260, China. Electronic address:

Psoriasis is a prevalent, chronic inflammatory disease characterized by abnormal skin plaques. To date, physical therapy, topical therapy, systemic therapy and biologic drugs are the most commonly employed strategies for treating psoriasis. Recently, many agents have advanced to clinical trials, and some anti-psoriasis drugs have been approved, including antibody drugs and small-molecule drugs.

View Article and Find Full Text PDF

Background: Preeclampsia is a key cause of prematurity in the U.S. and incurs significant healthcare costs.

View Article and Find Full Text PDF

The protein deacetylase HDAC6 has been controversially linked to cancer cell proliferation and viral propagation. We analyzed whether a pharmacological depletion of HDAC6 with a recent proteolysis-targeting chimera (PROTAC) kills tumor cells. We show that low micromolar doses of the cereblon-based PROTAC TH170, but not its inactive analog TH170E, induce proteasomal degradation of HDAC6.

View Article and Find Full Text PDF

Combined anti-leukemic effect of gilteritinib and GSK-J4 in FLT3-ITD acute myeloid leukemia.

Transl Oncol

January 2025

The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; Department of Hematology, The First Hospital of Lanzhou University, Lanzhou 730000, China. Electronic address:

Gilteritinib treats acute myeloid leukemia (AML) with the FMS-like receptor tyrosine kinase-3 (FLT3) internal tandem duplication (ITD) mutation. Dysregulation of histone modification affects the genesis and progression of AML. Strategies targeting key histone regulators have not been applied to the treatment of AML.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!