At present, excessive Fe in daily water has become a threat to human health. Among the conventional detection methods for Fe, fluorescent probes have been applied on a large scale due to their simplicity and efficiency. However, the currently available fluorescent probes are difficult to synthesize, costly and environmentally unfriendly, limiting their applications. In this work, a fluorescent extract of Pterocarpus wood was successfully obtained, and the structure of some coumarin-based molecules in this extract was determined by 2D-NMR. Subsequently, the intensity of this fluorescence was optimized using response surface methodology (RSM), resulting in a high-intensity fluorescent probe. The probe was sensitive to the concentrations of Fe and MnO, and could efficiently detects Fe in the range of 2.7 μM-8.0 μM, with LOD and LOQ reaching 1.06 μM and 3.20 μM, respectively. Moreover, based on the strong complexation property of EDTA on Fe, this work designed the "switch-on" fluorescent probes. The experiment shows that both static and dynamic quenching exist in this system. The mechanism of complexation and oxidation of fluorescent molecules by the quencher is interpreted in the quenching reaction. In addition, the fluorescent probe has a high yield and low cost, it also performs well in actual water sample tests. This method is expected to be developed as a new way on Fe detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2024.126384 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!