A grid fault diagnosis framework based on adaptive integrated decomposition and cross-modal attention fusion.

Neural Netw

Institute of Artificial Intelligence and Robotics (IAIR), Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic & Transportation Engineering, Central South University, Changsha 410075, Hunan, China. Electronic address:

Published: October 2024

AI Article Synopsis

Article Abstract

In large-scale power systems, accurately detecting and diagnosing the type of faults when they occur in the grid is a challenging problem. The classification performance of most existing grid fault diagnosis methods depends on the richness and reliability of the data, in addition, it is difficult to obtain sufficient feature information from unimodal circuit signals. To address these issues, we propose a deep residual convolutional neural network (DRCNN)-based framework for grid fault diagnosis. First, we design a comprehensive information entropy value (CIEV) evaluation metric that combines fuzzy entropy (FuzEn) and mutual approximation entropy (MutEn) to integrate multiple decomposition subsequences. Then, DRCNN and heterogeneous graph transformer (HGT) are constructed for extracting multimodal features and considering modal variability. In addition, to obtain the implicit information of multimodal features and control the degree of their performance, we propose to incorporate the cross-modal attention fusion (CMAF) mechanism in the synthesis framework. We validate the proposed method on the three-phase transmission line dataset and VSB power line dataset with accuracies of 99.4 % and 99.0 %, respectively. The proposed method also achieves superior performance compared to classical and state-of-the-art methods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2024.106400DOI Listing

Publication Analysis

Top Keywords

grid fault
12
fault diagnosis
12
cross-modal attention
8
attention fusion
8
multimodal features
8
proposed method
8
grid
4
diagnosis framework
4
framework based
4
based adaptive
4

Similar Publications

This research is dedicated to improving the control system of wind turbines (WT) to ensure optimal efficiency and rapid responsiveness. To achieve this, the fuzzy logic control (FLC) method is implemented to control the converter in the rotor side (RSC) of a doubly fed induction generator (DFIG) and its performance is compared with an optimized proportional integral (PI) controller. The study demonstrated an enhancement in the performance of the DFIG through the utilization of the proposed FLC, effectively overcoming limitations and deficiencies observed in the conventional controllers, this approach significantly improved the performance of the wind turbine.

View Article and Find Full Text PDF

This paper presents an open-source dataset intended to enhance the analysis and optimization of photovoltaic (PV) power generation in urban environments, serving as a valuable resource for various applications in solar energy research and development. The dataset comprises measured PV power generation data and corresponding on-site weather data gathered from 60 grid-connected rooftop PV stations in Hong Kong over a three-year period (2021-2023). The PV power generation data was collected at 5-minute intervals at the inverter-level.

View Article and Find Full Text PDF

Unlike traditional tap changers, which require transformers to be de-energized before making changes, On-Load Tap Changers (OLTCs) can adjust taps while the transformer is in service, ensuring continuous power supply during voltage regulation. OLTCs enhance grid reliability and support load balancing, reducing strain on the network and optimizing power quality. Their importance has grown as the demand for stable voltage and the integration of renewables has increased, making them vital for modern and resilient power systems.

View Article and Find Full Text PDF

Diagnosing faults in wheelset bearings is critical for train safety. The main challenge is that only a limited amount of fault sample data can be obtained during high-speed train operations. This scarcity of samples impacts the training and accuracy of deep learning models for wheelset bearing fault diagnosis.

View Article and Find Full Text PDF

China's wind power generation is rich in resources and mature technology, but has the problems of harsh power generation environment, high operation and maintenance costs due to complex operating conditions, and serious consequences of failures. For this reason, this paper proposes a more efficient defect identification method for wind turbine blades that have the longest downtime due to faults. Firstly, starting from the characteristics that the blade defects are darker than the surrounding and distributed in block or point shape, the blade images taken by UAV cruise are processed by grey scaling, filtering, histogram equalization and Grab-cut foreground segmentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!