Galectin-3 is a multifunctional protein that is involved in various physiological and pathological events. Emerging evidence suggests that galectin-3 also plays a critical role in the pathogenesis of pulmonary diseases. Galectin-3 can be produced and secreted by various cell types in the lungs, and the overexpression of galectin-3 has been found in acute lung injury/acute respiratory distress syndrome (ALI/ARDS), pulmonary hypertension (PH), pulmonary fibrosis diseases, lung cancer, lung infection, chronic obstructive pulmonary disease (COPD), and asthma. Galectin-3 exerts diverse effects on the inflammatory response, immune cell activation, fibrosis and tissue remodeling, and tumorigenesis in these pulmonary disorders, and genetic and pharmacologic modulation of galectin-3 has therapeutic effects on the treatment of pulmonary illnesses. In this review, we summarize the structure and function of galectin-3 and the underlying mechanisms of galectin-3 in pulmonary disease pathologies; we also discuss preclinical and clinical evidence regarding the therapeutic potential of galectin-3 inhibitors in these pulmonary disorders. Additionally, targeting galectin-3 may be a very promising therapeutic approach for the treatment of pulmonary diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00408-024-00709-y | DOI Listing |
Background: Polysomnography (PSG) is resource-intensive but remains the gold standard for diagnosing Obstructive Sleep Apnea (OSA). We aimed to develop a screening tool to better allocate resources by identifying individuals at higher risk for OSA, overcoming limitations of current tools that may under-diagnose based on self-reported symptoms.
Methods: A total of 884 patients (490 diagnosed with OSA) were included, which was divided into the training, validation, and test sets.
Physiol Res
December 2024
Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been associated with significant cardiovascular complications, including myocardial infection and pulmonary embolism. This study aims to elucidate the relationship between the presence of SARS-CoV-2 RNA in the myocardium of the left ventricle and the levels of IgG and IgM antibodies against the SARS-CoV-2 virus in deceased COVID-19 patients. We conducted a post-mortem examination on 91 individuals who succumbed to COVID-19-related complications.
View Article and Find Full Text PDFPhysiol Res
December 2024
Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
The global COVID-19 pandemic, caused by SARS-CoV-2, has led to significant morbidity and mortality, with a profound impact on cardiovascular health. This review investigates the mechanisms of SARS-CoV-2's interaction with cardiac tissue, particularly emphasizing the role of the Spike protein and ACE2 receptor in facilitating viral entry and subsequent cardiac complications. We dissect the structural features of the virus, its interactions with host cell receptors, and the resulting pathophysiological changes in the heart.
View Article and Find Full Text PDFBackground: Epidemics and pandemics have been shown to have widespread effects on health systems. Diabetes is a condition of particular risk during national emergencies such as the COVID-19 pandemic. The aim of this study is to determine the influence of COVID-19 in the patient's diabetes quality management.
View Article and Find Full Text PDFJ Thorac Cardiovasc Surg
January 2025
Coronary Center, Department of Thoracic and Cardiovascular Surgery, Miller Family Heart, Vascular, & Thoracic Institute, Cleveland Clinic, Cleveland, Ohio. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!