Despite their critical roles in genetic sex determination, sex chromosomes remain unknown in many non-model organisms, especially those having recently evolved sex-linked regions (SLRs). These evolutionarily young and labile sex chromosomes are important for understanding early sex chromosome evolution but are difficult to identify due to the lack of Y/W degeneration and SLRs limited to small genomic regions. Here, we present SLRfinder, a method to identify candidate SLRs using linkage disequilibrium (LD) clustering, heterozygosity and genetic divergence. SLRfinder does not rely on specific sequencing methods or a specific type of reference genome (e.g., from the homomorphic sex). In addition, the input of SLRfinder does not require phenotypic sexes, which may be unknown from population sampling, but sex information can be incorporated and is necessary to validate candidate SLRs. We tested SLRfinder using various published datasets and compared it to the local principal component analysis (PCA) method and the depth-based method Sex Assignment Through Coverage (SATC). As expected, the local PCA method could not be used to identify unknown SLRs. SATC works better on conserved sex chromosomes, whereas SLRfinder outperforms SATC in analysing labile sex chromosomes, especially when SLRs harbour inversions. Power analyses showed that SLRfinder worked better when sampling more populations that share the same SLR. If analysing one population, a relatively larger sample size (around 50) is needed for sufficient statistical power to detect significant SLR candidates, although true SLRs are likely always top-ranked. SLRfinder provides a novel and complementary approach for identifying SLRs and uncovering additional sex chromosome diversity in nature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1755-0998.13985 | DOI Listing |
Genome
January 2025
Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil;
Our comprehension of avian karyotypes still needs to be improved, especially for Suliform birds. To enhance understanding of chromosomal evolution in this order, we conducted conventional and molecular cytogenetic analysis in five species, named Sula dactylatra, S. leucogaster, S.
View Article and Find Full Text PDFJ Endocr Soc
January 2025
Department of Pathology, Stanford University, Stanford, CA 94304, USA.
In the last 10 years the field of prenatal diagnosis has been significantly reshaped followed by the implementation of noninvasive prenatal cell-free DNA (cfDNA) testing methodologies in clinical practice. Based on a superior performance and higher sensitivity and specificity than the former practice of biochemical markers screening, the American College of Obstetricians and Gynecologists and American College of Medical Genetics and Genomics recommend noninvasive prenatal cfDNA screening for trisomy 21, 18, 13, and sex chromosome aneuploidy to all pregnant people. While cfDNA screening is helpful in risk assessment for the most common autosomal trisomies, cfDNA also provides information about fetal sex chromosomes.
View Article and Find Full Text PDFBMC Biol
January 2025
Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.
Background: Silver arowana (Osteoglossum bicirrhosum) is a basal fish species with sexual monomorphism, while its sex determination mechanism has been poorly understood, posing a significant challenge to its captive breeding efforts.
Results: We constructed two high-quality chromosome-level genome assemblies for both female and male silver arowana, with scaffold N50 values over 10 Mb. Combining re-sequencing data of 109 individuals, we identified a female-specific region, which was localized in a non-coding region, i.
Commun Biol
January 2025
Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014, Paris, France.
The H3K79 methyltransferase DOT1L is essential for multiple aspects of mammalian development where it has been shown to regulate gene expression. Here, by producing and integrating epigenomic and spike-in RNA-seq data, we decipher the molecular role of DOT1L during mouse spermatogenesis and show that it has opposite effects on gene expression depending on chromatin environment. On one hand, DOT1L represses autosomal genes that are devoid of H3K79me2 at their bodies and located in H3K27me3-rich/H3K27ac-poor environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!