Background: Periodontal diseases are the most frequently diagnosed problem in cats. It has been well-established that periodontal diseases could not only cause various oral health issues but could also contribute to systemic diseases. Oxidative stress is a possible link between systemic diseases and periodontitis. Our study aimed to illustrate the influence of periodontitis on oxidative stress development in cats. Furthermore, the changes in the bacterial flora of the gums were investigated.

Methods: Based on the clinical and laboratory examinations, fifty cats were divided into two groups normal (n = 25) and moderate to advanced periodontitis (n = 25). Serum total antioxidant capacity (TAC), total oxidant status (TOS), reduced (GSH) and oxidized glutathione (GSSG) were measured. In addition, samples were taken from the subgingival plaques of all cats for bacterial culture.

Results: Serum TOS, GSSG, GSSG to GSH ratio, and oxidative stress index (OSI), calculated as the ratio of TOS to TAC in cats with periodontal disease were significantly higher, and TAC was significantly lower (p < 0.05) compared with controls. The results of bacterial culture indicated that the number of isolated bacterial colonies is higher in patients than in the control group. Additionally, the analysis of these data showed a positive association between periodontal index and oxidative stress.

Conclusions: Our results revealed that periodontitis in cats is related to a main oxidative stress. Furthermore, oxidant factors such as TOS and OSI, compared to antioxidant factors, may better indicate the presence of oxidative stress conditions in patients with periodontitis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11157746PMC
http://dx.doi.org/10.1186/s12917-024-04110-yDOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
moderate advanced
8
advanced periodontitis
8
periodontal diseases
8
systemic diseases
8
cats
6
periodontitis
4
periodontitis contributes
4
contributes increased
4
oxidative
4

Similar Publications

Activation of bone morphogenetic protein (BMP) 4 signaling promotes the survival of retinal ganglion cell (RGC) after acute injury. In this study, we investigated the role of the BMP4 signaling pathway in regulating the degeneration of retinal ganglion cells (RGCs) in a mouse glaucoma model and its potential application in retinal stem cell. Our results demonstrate that BMP4-GPX4 not only reduces oxidative stress and iron accumulation but also promotes neuroprotective factors that support the survival of transplanted RSCs into the host retina.

View Article and Find Full Text PDF

subverts the antioxidant defenses of its amoeba host .

Curr Res Microb Sci

January 2025

Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, France.

, the causative agent of Legionnaires' disease, interacts in the environment with free-living amoebae that serve as replicative niches for the bacteria. Among these amoebae, is a natural host in water networks and a model commonly used to study the interaction between and its host. However, certain crucial aspects of this interaction remain unclear.

View Article and Find Full Text PDF

Purpose: In vitro, oocyte development is susceptible to oxidative stress, which leads to endoplasmic reticulum (ER) stress. This study investigated whether the antioxidant melatonin attenuates ER stress and maintains oocyte-cumulus cell communication during the in vitro growth (IVG) of bovine oocytes.

Methods: Oocyte-granulosa cell complexes (OGCs) were harvested from slaughterhouse-derived ovaries and grown in vitro for 5 d at 38.

View Article and Find Full Text PDF

Introduction: Heavy metal soil pollution is a global issue that can be efficiently tackled through the process of phytoremediation. The use of rapeseed in the phytoremediation of heavy metal-contaminated agricultural land shows great potential. Nevertheless, its ability to tolerate heavy metal stress at the molecular level remains unclear.

View Article and Find Full Text PDF

Drought stress inhibits Bunge () seedling growth and yield. Here, we studied the effects of drought stress on the different parts of seedlings through physiological, transcriptomic, and metabolomics analyses, and identified key genes and metabolites related to drought tolerance. Physiological analysis showed that drought stress increased the accumulation of hydrogen peroxide (HO), enhanced the activity of peroxidase (POD), decreased the activity of catalase (CAT) and the contents of chlorophyll b and total chlorophyll, reduced the degree of photosynthesis, enhanced oxidative damage in seedlings, and inhibited the growth of plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!