Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: To assess the impact of self-medication on the transmission dynamics of COVID-19 across different age groups, examine the interplay of vaccination and self-medication in disease spread, and identify the age group most prone to self-medication.
Methods: We developed an age-structured compartmentalized epidemiological model to track the early dynamics of COVID-19. Age-structured data from the Government of Gauteng, encompassing the reported cumulative number of cases and daily confirmed cases, were used to calibrate the model through a Markov Chain Monte Carlo (MCMC) framework. Subsequently, uncertainty and sensitivity analyses were conducted on the model parameters.
Results: We found that self-medication is predominant among the age group 15-64 (74.52%), followed by the age group 0-14 (34.02%), and then the age group 65+ (11.41%). The mean values of the basic reproduction number, the size of the first epidemic peak (the highest magnitude of the disease), and the time of the first epidemic peak (when the first highest magnitude occurs) are 4.16499, 241,715 cases, and 190.376 days, respectively. Moreover, we observed that self-medication among individuals aged 15-64 results in the highest spreading rate of COVID-19 at the onset of the outbreak and has the greatest impact on the first epidemic peak and its timing.
Conclusion: Studies aiming to understand the dynamics of diseases in areas prone to self-medication should account for this practice. There is a need for a campaign against COVID-19-related self-medication, specifically targeting the active population (ages 15-64).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11157731 | PMC |
http://dx.doi.org/10.1186/s12889-024-18984-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!